
1 
 

COSINE AND COTANGENT THEOREMS FOR A QUADRILATERAL, TWO NEW 

FORMULAS FOR ITS AREA AND THEIR APPLICATIONS 
 

V. Nenkov1, St. Stefanov2, H. Haimov3, A. Velchev4 

 

Abstract. Here we show new relationships between elements of a convex quadrilateral. They generalize 

the cosine and the so-called cotangent theorem for a triangle. We named the new ones cosine and 

cotangent theorems for a quadrilateral. We derive by them new formulae for the area of any quadrilateral, 

which help to find various relationships in a triangle and a quadrilateral (a Carnot theorem for a triangle 

and the Brahmagupta’s theorem for the area of an inscribed quadrilateral are generalized, as examples). 

 

1. INTRODUCTION 
In the last time there were discovered many noticeable points in an arbitrary convex quadrilateral 

(see the reference list at the end of this work). Part of them were defined analogously to some noticeable 

points of a triangle. It became clear, as we will see, that besides the properties of remarkable points, 

some popular theorems for a triangle can be transferred to a quadrilateral (as the so-called cosine and 

cotangent theorems). Via the obtained cosine and cotangent theorems for a quadrilateral we proved 

unknown till now formulas for it’s area. As two applications of derived here formulas and dependencies, 

we generalize Carnot theorem for a triangle and Brahmagupta’s theorem for calculating the area of an 

inscribed quadrilateral. 

 

2. COSINE AND COTANGENT THEOREMS FOR A QUADRILATERAL. 

Before we formulate and prove the cosine and the cotangent theorems for a quadrilateral, let us remind 

and prove the cotangent theorem for triangle, as it is less popular, and then use it. 

Theorem 1 (Cotangent theorem for a triangle). The side lengths of ΔАВС are АВ = а, ВС = b and СА 

= с, ACB   and S is the triangle’s area. This relationship is valid: 

 2 2 2 4 .cot 1c a b S     

Proof 1. According to the cosine theorem for ΔАВС we have (Fig. 1): 
2 2 2 2 .cosc a b ab    . 

 

                                
 

Figure 1. Shows objects from Theorem 1.        Figure 2. Shows objects from Theorem 2, 3 and 4. 

 

From the other side, there holds the equation 
1

.sin
2

S ab  . From here we derive: 

2 2 2 2 24 sin .cot 4 .cot
2

ab
c a b a b S         . 

Thus the equation (1) is proved.  

Now we are able formulate and prove the cosine and cotangent theorems for a quadrilateral: 

Theorem 2. (Cosine theorem for a quadrilateral). Denote the side lengths АВ, ВС, СD and DА in a 

quadrilateral АВСD with а, b, с and d, m and n – the lengths of the diagonals АС and ВD, and φ – the 

measure of the angle between the diagonals, opposite to ВС (Fig. 2). Then: 

 2 2 2 2 2 .cos 2b d a c mn      

Proof 2. Let the diagonals АС, ВD intersect at point T and 
1AT m , 

1BT n , 
1CT p , 

1DT q . 

Applying the cosine theorem to ΔАВT, ΔВСT, ΔСDT and ΔDАT, we get respectively: 
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We add the first with the third equations of (3), and the second with the forth, and get: 
2 2 2 2 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1 1 1

2 .cos 2 .cos

2 .cos 2 .cos

a c m n p q m n p q

b d n p q m n p q m

 

 

      

      
 

From the last two ones there follows the equation: 
2 2 2 2

1 1 1 1 1 1 1 12 .cos 2 .cos 2 .cos 2 .cosa c m n p q b d n p q m          , 

which can be transformed this way: 

 2 2 2 2

1 1 1 1 1 1 1 12 .cosb d a c m n n p p q q m        . 

As   1 1 1 1 1 1 1 1 1 1 1 1m n n p p q q m m p n q mn       , it leads to (2), which we wanted to prove. 

Note 1: It’s easy to guess, that in the boundary case, when the quadrilateral АВСD distorts in a ΔАВС, 

i.e. when D A , then 0d  , c m , CAB  , n a  and (2) gives then the relationship 
2 2 2 2 .cosb a m am CAB   , which is the cosine theorem for ΔАВС. This fact legitimates the usage 

of the term “cosine theorem” for this dependency.  

The cotangent theorem for a quadrilateral is derived by the cosine theorem for it in the same way, as in 

the triangle. 

Theorem 3 (Cotangent theorem for a quadrilateral). Let АВСD be a quadrilateral of side lengths АВ 

= а, ВС = b, СD = с and DА = d, and area S. If the angle between the diagonals, which is opposite to 

the side ВС, is  , then: 

 2 2 2 2 4 .cot 4b d a c S      

Proof 3. Let the lengths of the diagonals АС and ВD, be m and n resp. (Fig. 2). According to the proved 

cosine theorem for a quadrilateral, we have: 
2 2 2 2 2 .cosb d a c mn     . 

Therefore, having in mind the formula 
1

.sin
2

S mn   for a quadrilateral’s area, we get: 

2 2 2 2 2 24 sin .cot 4 .cot
2

mn
b d a c a c S          . 

Thus the equation (4) is proved. 

Note 2. It’s easy to guess, that in the boundary case, when the quadrilateral АВСD becomes ΔАВС, i.e. 

if D A , then 0d  , c m , CAB   and the dependency (4) transforms to the dependency 
2 2 2 4 .cotb a m S CAB   , i.e. in the cotangent theorem for the ΔАВС. This legitimates the term 

“cotangent theorem”, which we give to this relationship. 

 

2. NEW FORMULAS FOR THE AREA OF AN ARBITRARY QUADRILATERAL. 
From the proven relationship (4), which we’ve called cotangent theorem for a quadrilateral, in the case 

if 90  , the quadrilateral’s area S can be expressed through the lengths of the sides and the tangent 

of the angle between the diagonals of the quadrilateral. We thus get the following unknown up to now 

formula for the area of an arbitrary quadrilateral: 

   2 2 2 21
.tan , where 90 5

4
S a c b d             

Let us underline, that in this formula φ is those angle between the diagonals АС and ВD, which lies 

opposite to the side of length b. With the help of the cosine theorem for a quadrilateral, a second new 

formula for its face is derived, by which it is expressed by the lengths of the sides and the diagonals of 

the quadrilateral. 
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Theorem 4. АВСD is a convex quadrilateral with side lengths АВ = a, ВС = b, СD = c, DА = d and 

diagonals’ lengths АС = m and ВD = n (Fig. 2). The area S of the quadrilateral is expressed by these 

magnitudes through the formula: 

   
2

2 2 2 2 2 21
4 6

4
S m n a c b d      

Proof 4. Via the cosine theorem for the quadrilateral АВСD we have: 
2 2 2 2 2 .cosb d a c mn     . 

2 2 2 2

cos
2

a c b d

mn


  
  , 

 
2

2 2 2 2 2 2

2

2 2

4
sin

4

m n a c b d

m n


   
  and as 

1
.sin

2
S mn  , from the 

last equation we get (6), which we had to prove. 

The just obtained formulas for area of a convex quadrilateral, and the cosine and the cotangent theorems 

for it, have important applications. With their help, for example, a series of inequalities connecting the 

lengths of the sides and the diagonals of any convex quadrilateral, as well as other important 

relationships between the lengths of the sides and the diagonals of the quadrilateral, are derived (see [1], 

[2] for more). Here we will apply the derived cotangent theorem for the quadrilateral and the second 

derived formula for its area to generalize two classical theorems of geometry. 

 

3. A GENERALIZATION OF A CARNOT THEOREM. 

The French engineer Lasar Carnot (1753 – 1823) has proved the following:  

Theorem 5 (of Carnot). ΔАВС is an arbitrary one and 
1l , 

2l  and 
3l  are the perpendiculars from arbitrary 

points 
1A , 

1B  and 
1C  on ВС, СА and АВ, to the same sides (Fig. 3). The lines 

1l , 
2l  and 

3l  meet at a 

single point if and only if there holds the equation: 

 2 2 2 2 2 2

1 1 1 1 1 1 0 7CA BA AB CB BC AC       
 

           
Figure 3. Shows objects in Theorem 5.            Figure 4. Shows objects in Theorem 6. 

 

We will generalize the Theorem 5 by cancelling the condition the points 
1A , 

1B  and 
1C  to lie either on 

the sides ВС, СА and АВ of ΔАВС, or on the lines ВС, СА and АВ, and by replacing the perpendiculars 

1l , 
2l  and 

3l  to these sides with lines, sloped to ВС, СА and АВ at the same angle φ:  

Theorem 6 (Generalization of a Carnot theorem). ΔАВС is a positively oriented one (Fig. 4). 
1A  is 

an arbitrary point either on the semi plane along the line ВС, which do not include the triangle, or on the 

line ВС. The points 
1B  and 

1C  satisfy the same conditions with respect to the lines СА and АВ. The 

sloped lines 1l


, 2l


 and 3l


, respective to the sides ВС, СА and АВ of the АВС, pass through the 

points
1A , 

1B  and 
1C , and form angles of equal measure φ with the positive directions. If S is the area of 

the hexagon 
1 1 1AC BACB , which is not necessarily convex, then the lines 

1l , 
2l  and 

3l  meet at a single 

point if and only if: 

 2 2 2 2 2 2

1 1 1 1 1 1 4 .cot 8CA BA AB CB BC AC S        
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Proof 6. 1) Let firs assume that the 1l


, 2l


 и 3l


 meet at a single point Р (Fig. 4).  

Denote 1S , 2S , 3S  the areas of the covering quadrilaterals 
1BACP , 

1CB AP , 
1AC BP  of the hexagon 

1 1 1BACB AC . Via the cotangent theorem we get from these quadrilaterals resp.: 

2 2 2 2

1 1 14 .cotBA CP CA BP S     , 

2 2 2 2

1 1 24 .cotCB AP AB CP S     , 

2 2 2 2

1 1 34 .cotAC BP BC AP S     . 

We add the last equalities term-by-term; as 
1 2 3S S S S   , therefore: 

2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 4 .cotBA CP CB AP AC BP CA BP AB CP BC AP S              

The last equation is easily simplified to (8). Thus we proved, that if the lines 1l


, 2l


 and 3l


, sloped 

at angle φ, meet at one point, then (8) holds. 

2) Now we’ll prove the inverse implication, i.e. that if (8) is true, then the lines 1l


, 2l


 and 3l


, sloped 

at angle φ, meet at one point. Denote Р the common point of 1l


 and 2l


. It’s sufficient to prove that 

the ray 1C P
 coincides with 3l


, which passes through the point 

1C  under angle φ, i.e. that it forms 

angle φ with the positive direction of the side АВ. Otherwise, we have to prove, that the angle in the 

quadrilateral 
1AC BP , which form the diagonals 

1C P  and АВ, which lies opposing the side ВР, equals 

φ. Denote this angle 
1 . According to the cotangent theorem, from the quadrilaterals 

1BACP , 
1CB AP  

and 
1AC BP , we get respectively:  

2 2 2 2

1 1 14 .cotBA CP CA BP S     , 

2 2 2 2

1 1 24 .cotCB AP AB CP S     , 

2 2 2 2

1 1 3 14 .cotAC BP BC AP S     . 

Adding these equations term by term, we get: 

     

       

2 2 2 2 2 2

1 1 1

2 2 2 2 2 2

1 1 1 1 2 3 14 .cot 4 .cot

BA CP CB AP AC BP

CA BP AB CP BC AP S S S 

     

        
 

and after simplification: 

 2 2 2 2 2 2

1 1 1 1 1 1 1 2 3 14 .cot 4 .cotCA BA AB CB BC AC S S S         . 

From the other side, we assume that (8) holds, which can be represented thus: 

 2 2 2 2 2 2

1 1 1 1 1 1 1 2 34 .cot 4 .cotCA BA AB CB BC AC S S S         . 

From the last two equations 
3 1 34 .cot 4 .cotS S  , i.e. 

1  , and the theorem is proved.  

 
4. A GENERALIZATION OF BRAHMAGUPTA’S THEOREM. 

From the new formula for area of a convex quadrilateral (formula (6)) we get in particular the famous 

Brahmagupta’s formula (7 century AD) for area of an inscribed quadrilateral. As for such quadrilateral 

we have mn ac bd   (according to the Ptolemy theorem), after replacing in (6) we get (fig. 2):  

   

  

22 2 2 2 2

2 2 2 2 2 2 2 2

1
4

4

1
2 2 2 2

4

S ac bd a c b d

ac bd a c b d ac bd b d a c

      

           

 

       
2 2 2 21

4
a c b d b d a c          

   
 

    
1

4
a c b d a c b d b d a c b d a c              
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By setting 
2

a b c d
p

  
 , we get     S p a p b p c p d     , which is the Brahmagupta’s 

formula for the area of an inscribed quadrilateral. 

We see, that formula (8) for the area of a convex quadrilateral generalizes the Brahmagupta’s formula 

for the area of an inscribed quadrilateral. 

         

5. CONCLUSIONS.  
The above-proven dependencies in an arbitrary quadrilateral and the formulas for its area serve to derive 

various other relationships in it. We will consider them in further articles. 
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