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Abstract. Here we show new relationships between elements of a convex quadrilateral. They generalize
the cosine and the so-called cotangent theorem for a triangle. We named the new ones cosine and
cotangent theorems for a quadrilateral. We derive by them new formulae for the area of any quadrilateral,
which help to find various relationships in a triangle and a quadrilateral (a Carnot theorem for a triangle
and the Brahmagupta’s theorem for the area of an inscribed quadrilateral are generalized, as examples).

1. INTRODUCTION

In the last time there were discovered many noticeable points in an arbitrary convex quadrilateral
(see the reference list at the end of this work). Part of them were defined analogously to some noticeable
points of a triangle. It became clear, as we will see, that besides the properties of remarkable points,
some popular theorems for a triangle can be transferred to a quadrilateral (as the so-called cosine and
cotangent theorems). Via the obtained cosine and cotangent theorems for a quadrilateral we proved
unknown till now formulas for it’s area. As two applications of derived here formulas and dependencies,
we generalize Carnot theorem for a triangle and Brahmagupta’s theorem for calculating the area of an
inscribed quadrilateral.

2. COSINE AND COTANGENT THEOREMS FOR A QUADRILATERAL.
Before we formulate and prove the cosine and the cotangent theorems for a quadrilateral, let us remind
and prove the cotangent theorem for triangle, as it is less popular, and then use it.
Theorem 1 (Cotangent theorem for a triangle). The side lengths of AdBC are AB = a, BC=b and CA
= ¢, <ACB =y and S is the triangle’s area. This relationship is valid:

c’=a’+b*-4S.coty (1)
Proof 1. According to the cosine theorem for A4BC we have (Fig. 1):

c’=a’+b’—2ab.cosy .

Figure 1. Shows objects from Theorem 1. Figure 2. Shows objects from Theorem 2, 3 and 4.

From the other side, there holds the equation S = %ab.sin y . From here we derive:

c’=a’+ b2—4a?b-sin y.coty =a’+b’—4S.coty .

Thus the equation (1) is proved.

Now we are able formulate and prove the cosine and cotangent theorems for a quadrilateral:

Theorem 2. (Cosine theorem for a quadrilateral). Denote the side lengths AB, BC, CD and D4 in a
quadrilateral ABCD with a, b, ¢ and d, m and n — the lengths of the diagonals 4C and BD, and ¢ — the
measure of the angle between the diagonals, opposite to BC (Fig. 2). Then:

b?+d?=a’+c*—2mn.cos g (2)
Proof 2. Let the diagonals AC, BD intersect at point T and AT =m,, BT =n, CT =p,, DT =q,.
Applying the cosine theorem to aA4BT, ABCT, ACDT and aADAT, we get respectively:
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a*=m; +n; —2mn,.cos (180" — )
b?=n?+ p’—2n,p,.cos¢

¢’= p; +07 - 2p,,.cos(180 — )
d?=g’+m?—2g,m,.cos ¢

We add the first with the third equations of (3), and the second with the forth, and get:
a’+c’=m>+n + p! +qf +2mn,.cos o+ 2p,g,.COS @

b*+d*=nZ+ pZ+q’ +m —2n,p,.cos @ — 2¢,m,.C0S ¢

From the last two ones there follows the equation:
a’+c*—2myn,.cos g —2p,q,.cos @ = b*+d? +2n, p,.cos ¢ + 2g,M,.COS @,

which can be transformed this way:

b*+d?=a*+c’—2(mn,+np,+ p,g,+qm, ).cosg.
As mn,+n,p,+ p,o,+0,m, =(m+ p, ) (n,+0, ) =mn, it leads to (2), which we wanted to prove.
Note 1: It’s easy to guess, that in the boundary case, when the quadrilateral 4BCD distorts in a A4BC,
i.e. when D—A, then d=0, c=m, ¢=<xCAB, n=a and (2) gives then the relationship
b®=a’®+m?*—2am.cos «CAB, which is the cosine theorem for A4BC. This fact legitimates the usage
of the term “cosine theorem” for this dependency.
The cotangent theorem for a quadrilateral is derived by the cosine theorem for it in the same way, as in
the triangle.
Theorem 3 (Cotangent theorem for a quadrilateral). Let ABCD be a quadrilateral of side lengths AB
=a,BC=h,CD =cand D4 =d, and area S. If the angle between the diagonals, which is opposite to
the side BC, is ¢, then:

b®+d®=a’+c*—4S.cotgp (4)
Proof 3. Let the lengths of the diagonals 4C and BD, be m and n resp. (Fig. 2). According to the proved
cosine theorem for a quadrilateral, we have:
b’ +d*=a’+c*—2mn.cose.

Therefore, having in mind the formula S :%mn.sin @ for a quadrilateral’s area, we get:

b2+d2=a2+C2—4%-Sin(o.C0t(p=a2+C2—4S.Cotgp.

Thus the equation (4) is proved.

Note 2. It’s easy to guess, that in the boundary case, when the quadrilateral ABCD becomes a4BC, i.e.
if D—> A, then d=0, c=m, ¢=<«CAB and the dependency (4) transforms to the dependency
b?=a’+m?—4S.cot«<CAB, i.e. in the cotangent theorem for the aA4BC. This legitimates the term
“cotangent theorem”, which we give to this relationship.

2. NEW FORMULAS FOR THE AREA OF AN ARBITRARY QUADRILATERAL.
From the proven relationship (4), which we’ve called cotangent theorem for a quadrilateral, in the case

if @907, the quadrilateral’s area S can be expressed through the lengths of the sides and the tangent

of the angle between the diagonals of the quadrilateral. We thus get the following unknown up to now
formula for the area of an arbitrary quadrilateral:

S:%(a2+c2—b2—d2).tan(p, where ¢ #90° (5)

Let us underline, that in this formula ¢ is those angle between the diagonals AC and BD, which lies
opposite to the side of length b. With the help of the cosine theorem for a quadrilateral, a second new
formula for its face is derived, by which it is expressed by the lengths of the sides and the diagonals of
the quadrilateral.



Theorem 4. ABCD is a convex quadrilateral with side lengths 4B =a, BC =b, CD = ¢, D4 = d and
diagonals’ lengths AC = m and BD = n (Fig. 2). The area S of the quadrilateral is expressed by these
magnitudes through the formula:
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S:Z\/4m2n2—(a2+cz—b2—d2) (6)

Proof 4. Via the cosine theorem for the quadrilateral 4ABCD we have:
b’ +d*=a’+c*—2mn.cos¢.
a?+c?—b2-d? ., 4m2n2—(a2+C2—b2—d2)2
= COS @ o , Sin“g pro
last equation we get (6), which we had to prove.
The just obtained formulas for area of a convex quadrilateral, and the cosine and the cotangent theorems
for it, have important applications. With their help, for example, a series of inequalities connecting the
lengths of the sides and the diagonals of any convex quadrilateral, as well as other important
relationships between the lengths of the sides and the diagonals of the quadrilateral, are derived (see [1],
[2] for more). Here we will apply the derived cotangent theorem for the quadrilateral and the second
derived formula for its area to generalize two classical theorems of geometry.

and as S =%mn.sin(p, from the

3. AGENERALIZATION OF A CARNOT THEOREM.

The French engineer Lasar Carnot (1753 — 1823) has proved the following:

Theorem 5 (of Carnot). A4dBC isan arbitrary one and | , I, and |, are the perpendiculars from arbitrary
points A, B, and C, on BC, C4 and 4B, to the same sides (Fig. 3). The lines |, I, and I, meet at a

single point if and only if there holds the equation:
CAZ—BA + AB2—CB?+ BC2— AC?=0 (7)

Figure 3. Shows objects in Theorem 5. Figure 4. Shows objects in Theorem 6.

We will generalize the Theorem 5 by cancelling the condition the points A, B, and C, to lie either on
the sides BC, CA and AB of AABC, or on the lines BC, CA and AB, and by replacing the perpendiculars
l,, 1, and I, to these sides with lines, sloped to BC, C4 and 4B at the same angle ¢:

Theorem 6 (Generalization of a Carnot theorem). a4BC is a positively oriented one (Fig. 4). A is
an arbitrary point either on the semi plane along the line BC, which do not include the triangle, or on the
line BC. The points B, and C, satisfy the same conditions with respect to the lines C4 and 4B8. The
sloped lines I,”, I,” and I, respective to the sides BC, CA and AB of the a ABC, pass through the
points A, B, and C,, and form angles of equal measure ¢ with the positive directions. If S is the area of
the hexagon AC,BACB,, which is not necessarily convex, then the lines |, |, and I, meet at a single
point if and only if:

CA’—BA’+ AB?—CB +BC? - AC?=4S.cot ¢ (8)



Proof 6. 1) Let firs assume that the I,”, 1,” u I,;” meet at a single point P (Fig. 4).
Denote S;, S,, S, the areas of the covering quadrilaterals BACP, CB,AP, AC,BP of the hexagon
BACB,AC, . Via the cotangent theorem we get from these quadrilaterals resp.:
BA’ +CP?=CA’ +BP*-4S_.cotp,
CB’ + AP?= AB? +CP*-4S,.cot g,
AC! +BP?=BC?+ AP’ —4S..cotg.
We add the last equalities term-by-term; as S; +S, +S, =S, therefore:
BA? +CP? +CB? + AP’ + AC] + BP? = CA? + BP? + AB? + CP? + BC + AP? - 4S.cot ¢
The last equation is easily simplified to (8). Thus we proved, that if the lines I,”, 1,” and 1,~, sloped

at angle ¢, meet at one point, then (8) holds.
2) Now we’ll prove the inverse implication, i.e. that if (8) is true, then the lines |,”, I,” and I, sloped

at angle ¢, meet at one point. Denote P the common point of I,” and 1, . It’s sufficient to prove that

the ray C,P~ coincides with I,”, which passes through the point C, under angle ¢, i.e. that it forms

angle ¢ with the positive direction of the side 4B. Otherwise, we have to prove, that the angle in the
quadrilateral AC,BP, which form the diagonals C,P and 4B, which lies opposing the side BP, equals

. Denote this angle ¢, . According to the cotangent theorem, from the quadrilaterals BACP, CB, AP
and AC BP, we get respectively:

BA’ +CP? =CA’ +BP?-4S,.cot o,

CB} + AP?= AB? +CP?-4S,.cotp,

AC} +BP?=BC/] + AP?-4S,.coty, .
Adding these equations term by term, we get:

(BA®+CP?)+(CB} + AP?)+(AC; +BP?) =
=(CA?+BP?)+(AB{ +CP?)+(BC/ + AP*)-4(S, +S,).cotp—4S;.cot ¢,
and after simplification:
CA’ —BA’ + AB? —CB + BC/ — AC/ =4(S, +S,).cot p+4S;.cot ¢,
From the other side, we assume that (8) holds, which can be represented thus:
CA’—BA’+ AB/—CB?+BC/— AC?= 4(S,+8S,).cotp+4S,.cotg.

From the last two equations 4S,.cot ¢, =4S,.cote, i.e. ¢ =¢,, and the theorem is proved.

4. A GENERALIZATION OF BRAHMAGUPTA’S THEOREM.

From the new formula for area of a convex quadrilateral (formula (6)) we get in particular the famous
Brahmagupta’s formula (7 century AD) for area of an inscribed quadrilateral. As for such quadrilateral
we have mn=ac+bd (according to the Ptolemy theorem), after replacing in (6) we get (fig. 2):

S :%\/4(ac+bd)2—(a2+cz—b2—d2)2 -

:%\/(Zac+2bd +a’ +cz—b2—d2)(2ac+2bd +b2+d2—a2—c2) _

=%\/[(a+c)2_(b_d)z}[(md)z ~(a—cf]=

:%\/(a+c+b—d)(a+c—b+d)(b+d +a-c)(b+d-a+c)




By setting p = w,we get S =\/( p—a)(p-b)(p—c)(p—d),which is the Brahmagupta’s

formula for the area of an inscribed quadrilateral.
We see, that formula (8) for the area of a convex quadrilateral generalizes the Brahmagupta’s formula
for the area of an inscribed quadrilateral.

5. CONCLUSIONS.
The above-proven dependencies in an arbitrary quadrilateral and the formulas for its area serve to derive
various other relationships in it. We will consider them in further articles.
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