New Formulas for Distances Between New and Traditional Remarkable Points in a Quadrilateral

Veselin N. Nenkov ${ }^{1, \mathrm{a})}$, Sava Iv. Grozdev ${ }^{2, b}$, Asen P. Velchev ${ }^{3, c}$, Rayna M. Alashka ${ }^{4, \mathrm{~d}}$, Stanislav T. Stefanov ${ }^{5, \mathrm{e})}$ and Haim M. Haimov ${ }^{6}$
${ }^{1}$ Nikola Vaptsarov Naval Academy, Department of Mathematics and Physics, Faculty of Engineering, str. „, Vasil Drumev " № 73, Varna 9002, Bulgaria
${ }^{2}$ University of Plovdiv "St. Paisii Hilendarski", Faculty of Mathematics and Informatics, "Bulgaria" blvd. № 236, Plovdiv 4027, Bulgaria
${ }^{3}$ Technical University of Sofia, Faculty of Applied Mathematics and Informatics, "Kliment Ohridski" blvd. №8, Sofia 1000, Bulgaria
${ }^{4}$ Sofia University "St. Kliment Ohridski", Faculty of Mathematics and Informatics, "James Bourchier" blvd. № 5, Sofia 1164, Bulgaria
${ }^{5}$ University of Architecture, Civil Engineering and Geodesy, Faculty of Transport Engineering, "Hristo Smirnenski" blvd. № 1, Sofia 1164, Bulgaria
${ }^{6} 16$ Bratia Shkorpil St., Varna 9000, Bulgaria
a) vnenkov@mail.bg
${ }^{\text {b) }}$ sava.grozdev@gmail.com
${ }^{\text {c) }}$ Corresponding author: asen_v@abv.bg
${ }^{\text {d) }}$ ralashka@fmi.uni-sofia.bg
${ }^{\text {e) }}$ stanislav.toshkov@abv.bg

Abstract

Here we consider new geometrical objects and their properties, obtained in our previous works and several theorems, which provide new formulas for distances between new and traditional remarkable points in a quadrilateral, and other new relationships, namely: 1) the distances from (the intersection points of the perpendicular bisectors of the opposite sides) to the (vertices and the point of Miquel of the quadrilateral); and 2) the relationships between the: (side lengths and the measures of the angles between adjacent and opposite quadrilateral's sides), (distances between the intersection point of the perpendicular bisectors of the diagonals and the quadrilateral's vertices with the side lengths and the measures of the angles between the two diagonals and between each diagonal with each of it's adjacent sides), (side lengths and the angles between the two diagonals and between each diagonal and each its adjacent side) and (distances from the diagonals' intersection point to the Brocard points with the side-lengths and the midline segments).

INTRODUCTION

One of the most easily defined remarkable points in the quadrilateral is the intersection point of the bisectors of each two opposite sides and the intersection of the bisectors of the diagonals. They are characterized by a number of interesting properties and are closely related to some of the other remarkable points in the quadrilateral. For brevity, we will call the intersection P_{1} of the perpendicular bisectors of the sides $A B$ and $C D$ of a quadrilateral $A B C D$ (Fig. 1) a bysector point corresponding to $A B$ and $C D$, and the intersection P_{2} of the perpendicular bisectors of the sides $A D$ and $B C$ - a bysector point corresponding to $A D$ and $B C$. The intersection point P_{3} of the bisectors of the diagonals $A C$ and $B D$ we call a bysector point corresponding to the diagonals. We guarantee the existence and uniqueness of the all bysector points, assumming the quadrilateral $A B C D$ has no two parallel sides. As we will see, there are simple formulas for the distances from the bysector points P_{1}, P_{2} and P_{3} to the vertices of $A B C D$, to its Miquel and Brocard points. We will summarize the properties of these points, which we will use.

1. PROPERTIES OF THE BROCARD POINTS AND THE MIQUEL POINT

Let $A B C D$ be a convex quadrilateral and T be the point of intersection of its diagonals (Fig. 2).
Definition 1. The second common point K_{1} of the circumcircles of $\triangle A B T$ and $\triangle C D T$ is called a Brocard point of $A B C D$, corresponding to its sides $A B$ and $C D$.

The Brocard point K_{2}, corresponding to $A D$ and $B C$, is analogously defined. K_{1} and K_{2} have these properties:
Property 1. Form similar triangles with their resp. sides: $\triangle A K_{1} B \sim \Delta C K_{1} D, \Delta A K_{2} D \sim \Delta C K_{2} B$ (Fig. 2) ([1]).
Definition 2. The circle (c) through the midpoints E and F of the diagonals and their intersection point T is called a Brocard circle of the quadrilateral (Fig. 3).

Property 2. The Brocard points K_{1} and K_{2} lie on the Brocard circle of the quadrilateral ([2]).

Quadrilateral's: FIGURE 1. Bisector points.

FIGURE 2. Brocardians.

FIGURE 3. Brocard circle.

Property 3. Let $A B C D$ be a convex quadrilateral and $E_{1}, E_{2}, E_{3}, E_{4}$ be the midpoints of its sides $A B, B C, C D$, $D A$, and a, B, c, d - their lengths. If m, n are the lengths of the diagonals $A C, B D$, and $E_{2} E_{4}=l_{1}$ (Fig. 3), then:

$$
\text { [2]: } \quad K_{1} A=\frac{m a}{2 l_{1}}, \quad K_{1} B=\frac{n a}{2 l_{1}}, \quad K_{1} C=\frac{m c}{2 l_{1}}, \quad K_{1} D=\frac{n c}{2 l_{1}} .
$$

Let us recall the Definition of a Miquel point: The extended sides $A D$ and $B C$ of a convex quadrilateral $A B C D$ intersect at a point U, and the extended sides $A B$ and $D C$ - at a point V. The circumcircles of the $\triangle A B U, \triangle D C U$, $\triangle A D V$ and $\triangle B C V$ meet at a point M. It is called a Miquel point of the quadrilateral (Fig. 4).

The Miquel point of a quadrilateral is characterized by the following properties:
Property 4. $A B C D$ is a convex quadrilateral, E and F - midpoints of it's diagonals $A C$ and $B D,|E F|=l_{3}$ and the side's lengths $A B, B C, C D, D A$ are a, b, c, d. The distances from the Miquel point M to its vertices are ([2]):

$$
M A=\frac{a d}{2 l_{3}}, \quad M B=\frac{a b}{2 l_{3}}, \quad M C=\frac{b c}{2 l_{3}}, \quad M D=\frac{c d}{2 l_{3}}
$$

FIGURE 4. Miquel point of a quadrilateral.

FIGURE 5. Miquel point M on the Brocard circles to its sides.

Definition 3. $A B C D$ is a convex quadrilateral, the extensions of its sides $A D$ and $B C$ intersect at the point U (Fig. 5). If E_{2} и E_{4} are the midpoints of $A D$ and $B C$, then the circle through E_{2}, E_{4} and U we call a Brocard circle of $A B C D$, corresponding to the sides $A D$ and $B C$. A Brocard circle, corresponding to $A B$ and $C D$, is similarly defined.

Property 5. The Miquel point M of a quadrilateral lies on the Brocard circles corresp. to its sides (Fig. 5) ([3]).

2. FORMULAS FOR THE DISTANCES FROM THE QUADRILATERAL'S VERTICES TO THE INTERSECTIONS OF PERPENDICULAR BISECTORS' OPPOSITE SIDES

Theorem 1. $A B C D$ is a convex quadrilateral, the extensions of its sides $A D$ and $B C$ intersect at a point U, $\Varangle A U B=\varphi$ (Fig. 6^{a}). The lengths of the sides $A B, B C, C D, D A$ are a, b, c, d, the measures of the angles at A, B, $C, D-\alpha, \beta, \gamma, \delta$. If P_{2} is the intersection of the perpendicular bisectors of $A D$ and $B C$, then it follows that

$$
\begin{equation*}
P_{2} A=P_{2} D=\frac{1}{2 \sin \varphi} \cdot \sqrt{a^{2}+c^{2}-2 a c \cdot \cos (\gamma-\beta)}, P_{2} B=P_{2} C=\frac{1}{2 \sin \varphi} \cdot \sqrt{a^{2}+c^{2}-2 a c \cdot \cos (\alpha-\delta)} \tag{1}
\end{equation*}
$$

Proof: If D is between A and U (Fig. 6^{a}), $P_{2} A=P_{2} D=x$ and D_{1} is such that $A D_{1} \| B C$ and $\Varangle D_{1} C B=\Varangle A B C=\beta$, then it follows for the isosceles trapezoid $A B C D$ that $C D_{1}=A B=a$ and that P_{2} lies on the perpendicular bisector of its base $B C$, which is a perpendicular bisector of $A D_{1}$ too. Hence $P_{2} D_{1}=P_{2} A=x$. From $P_{2} D_{1}=P_{2} D=P_{2} A=x$ follows that A, D_{1}, D lie on a circle (c) of center P_{2} and radius x, i.e. that $\triangle D_{1} A D$ is inscribed in (c), and $\Varangle D_{1} A D=\Varangle A U B=\varphi$ (as $D_{1} A \| B C$). From $\triangle D_{1} A D$, by the sine rule, $D_{1} D=2 x \cdot \sin \varphi$.

There are three possible cases for the position of the point $D_{1}-$ it may lie on:

1) the half-plane with contour the line $C D$ which contains the vertex B (fig. 6^{a}). In this case we have: $\Varangle D_{1} C D=\Varangle D C B-\Varangle D_{1} C B=\Varangle D C B-\Varangle A B C=\gamma-\beta$ and by the cosine rule from the $\triangle D_{1} D C \Rightarrow$ $\Rightarrow D_{1} D=\sqrt{D_{1} C^{2}+D C^{2}-2 D_{1} C \cdot D C \cos \Varangle D_{1} C D}=\sqrt{a^{2}+c^{2}-2 a c \cdot \cos (\gamma-\beta)}$;
2) the half-plane with contour $C D$, which does not contain B. In this case the expression for $D D_{1}$ is the same;
3) $C D$ (Fig. 6^{b}). Then $D_{1} D=\left|D_{1} C-D C\right|=|a-c|$, which $\Leftrightarrow D_{1} D=\sqrt{a^{2}+c^{2}-2 a c \cdot \cos (\gamma-\beta)}$, because $\gamma-\beta=0$ and $\cos (\gamma-\beta)=1$. In all three cases $D_{1} D=\sqrt{a^{2}+c^{2}-2 a c \cdot \cos (\gamma-\beta)}$. From this and from $D_{1} D=2 x \cdot \sin \varphi \Rightarrow P_{2} A=P_{2} D=x=\frac{D_{1} D}{2 \sin \varphi}=\frac{1}{2 \sin \varphi} \cdot \sqrt{a^{2}+c^{2}-2 a c \cdot \cos (\gamma-\beta)}$, which is the first of the equations (1) which we prove now. The second equation can be similarly proved.

Note. Analogously, the following formulas are obtained for the distances from the intersection P_{1} of the perpendicular bisectors of the sides $A B$ and $C D$ to the vertices of the quadrilateral:

$$
\begin{aligned}
& P_{1} A=P_{1} B=\frac{1}{2 \sin \psi} \cdot \sqrt{b^{2}+d^{2}-2 b d \cdot \cos (\delta-\gamma)} \\
& P_{1} D=P_{1} C=\frac{1}{2 \sin \psi} \sqrt{b^{2}+d^{2}-2 b d \cdot \cos (\alpha-\beta)}
\end{aligned}
$$

$$
\text { where } \psi=\Varangle\langle A B ; D C\rangle \text {. }
$$

3. FORMULAS FOR THE DISTANCES FROM THE INTERSECTIONS OF THE PERPENDICULAR BISECTORS OF OPPOSITE SIDES TO THE MIQUEL POINT

Lemma. $A B C D$ is a convex quadrilateral. The extensions of $A D$ and $B C$ meet at a point U and those of the sides $A B$ and $D C$ - at a point $V(C$ lies between D and V and between B and U). Let the sides lengths $A B, B C, C D, D A$ be a, b, c, d, and the measures of the angles at A and $D-\alpha$ and δ. If $\Varangle A U B=\varphi$, this equality holds (Fig. 7):

$$
\begin{equation*}
a \cdot \sin \alpha-c \cdot \sin \delta=b \cdot \sin \varphi \tag{2}
\end{equation*}
$$

Proof: Let T be the intersection of the diagonals $A C$ and $B D$, and let $\Varangle A V D=\psi$ (Fig. 7). We have then:

$$
\begin{aligned}
& a \cdot \sin \alpha-c \cdot \sin \delta=\frac{2}{d} \cdot\left(\frac{a d \cdot \sin \alpha}{2}-\frac{c d \cdot \sin \delta}{2}\right)=\frac{2}{d} \cdot\left(S_{A B D}-S_{A C D}\right)=\frac{2}{d} \cdot\left(S_{A B T}-S_{C D T}\right)= \\
& =\frac{2}{d} \cdot\left(S_{A C V}-S_{B D V}\right)=\frac{2}{d} \cdot\left[\frac{C V \cdot(a+B V) \cdot \sin \psi}{2}-\frac{B V \cdot(c+C V) \cdot \sin \psi}{2}\right],
\end{aligned}
$$

i.e.:

$$
\begin{equation*}
a \cdot \sin \alpha-c \cdot \sin \delta=\frac{\sin \psi}{d} \cdot(a \cdot C V-c \cdot B V) . \tag{3}
\end{equation*}
$$

FIGURE 7. Lemma proof.
Further: from the $\triangle B C V$ and $\triangle D C U$, by the sine rule: $\frac{\sin \psi}{b}=\frac{\sin \Varangle B C V}{B V}$ and $\frac{\sin \varphi}{c}=\frac{\sin \Varangle U C D}{U D}$, i.e.: $\sin \Varangle U C D=\frac{U D}{c} \cdot \sin \varphi$.

As $\Varangle B C V=\Varangle U C D$, we define: $\sin \psi=\frac{b \cdot \sin \Varangle B C V}{B V}=\frac{b \cdot \sin \Varangle U C D}{B V}=\frac{b}{B V} \cdot \frac{U D}{c} \cdot \sin \varphi$
Substituting in (3) we obtain:

$$
\begin{equation*}
a \cdot \sin \alpha-c \cdot \sin \delta=\frac{U D \cdot(a \cdot C V-c \cdot B V)}{B V \cdot d c} \cdot b \cdot \sin \varphi . \tag{4}
\end{equation*}
$$

On the other hand, according to Menelaus' theorem for $\triangle A V D$ and the line $U C B$ we have:

$$
\frac{A B}{B V} \cdot \frac{C V}{D C} \cdot \frac{U D}{A U}=1
$$

As $A B=a, D C=c, A U=d+U D$, hence we get: $a \cdot C V \cdot U D=B V \cdot c \cdot(d+U D)$,
i.e.:

$$
U D \cdot(a \cdot C V-c \cdot B V)=B V \cdot d c .
$$

From (4) and the last equality, it follows that $a \cdot \sin \alpha-c \cdot \sin \delta=\frac{U D \cdot(a \cdot C V-c \cdot B V)}{B V \cdot d c} \cdot b \cdot \sin \varphi=b \cdot \sin \varphi$.
Thus (2) is proved.
Theorem 2. $A B C D$ is a convex quadrilateral, the extensions of $A D$ and $B C$ meet at the point $U, \Varangle A U B=\varphi$, the lengths of $A B$ and $D C$ are a and c, and the distance between the midpoints of the diagonals is l_{3}. The distance between the intersection P_{2} of the perpendicular bisectors of $A D$ and $B C$, and the Miquel point M (Fig. 8) is:

$$
\begin{equation*}
P_{2} M=\frac{\left|a^{2}-c^{2}\right|}{4 l_{3} \cdot \sin \varphi} \tag{5}
\end{equation*}
$$

Proof: Let the intersection of the extended sides $A B$ and $D C$ be $V, \Varangle A V D=\psi$ (Fig. 8). We'll consider only the case when C lies between D and V, and between U and B. If the midpoints of $B C$ and $A D$ are E_{2} and E_{4}, then $\Varangle P_{2} E_{4} U=\Varangle P_{2} E_{2} U=90^{\circ}$. Therefore P_{2}, E_{2}, U and E_{4} lie on a circle (k) with diameter $P_{2} U$. As E_{2}, E_{4}, U lie on (k), it is the Brocard circle, corresponding to $A D$ and $B C$ (by definition 3). Therefore, from property $5, M \in(k)$, from where we get $\Varangle U M P_{2}=90^{\circ}$. Miquel 's point M lies on $\triangle D C U$'s circumcircle (by definition). From the inscribed quadrilateral $D C M U: ~ \Varangle U M C=\Varangle C D A=\delta$. Let $M P_{2}^{\rightarrow}$ lies between $M U^{\rightarrow}$ and $M C$, from the last equations $\Varangle P_{2} M C=\Varangle U M C-\Varangle U M P_{2}=\delta-90^{\circ}$. As M lies on the circumcircle of $\triangle B C V$ (by definition), and then $\Varangle B M C=\Varangle B V C=\psi$, therefore $\Varangle P_{2} M B=\Varangle P_{2} M C+\Varangle B M C=\left(\delta-90^{\circ}\right)+\psi$. The sum of the angles in the $\triangle A V D=180^{\circ} \Rightarrow\left(\delta-90^{\circ}\right)+\psi=90-\alpha \Rightarrow \Varangle P_{2} M B=90^{\circ}-\alpha$. By the cosine rule applied to the $\Delta P_{2} M C$ and $\Delta P_{2} M B$, we obtain:

$$
\begin{aligned}
& P_{2} C^{2}=P_{2} M^{2}+M C^{2}-2 P_{2} M \cdot M C \cdot \cos \Varangle P_{2} M C \\
& P_{2} B^{2}=P_{2} M^{2}+M B^{2}-2 P_{2} M \cdot M B \cdot \cos \Varangle P_{2} M B
\end{aligned}
$$

FIGURE 8. Theorem 2 Proof.
Since $P_{2} C=P_{2} B$, with subtraction of the last two equations, we find:

$$
\begin{equation*}
M B^{2}-M C^{2}=2 P_{2} M \cdot M B \cdot \cos \Varangle P_{2} M B-2 P_{2} M \cdot M C \cdot \cos \Varangle P_{2} M C \tag{6}
\end{equation*}
$$

But $M B=\frac{a b}{2 l_{3}}, M C=\frac{c b}{2 l_{3}}$ (from the property 4), $\Varangle P_{2} M B=90^{\circ}-\alpha$ and $\Varangle P_{2} M C=\delta-90^{\circ}$ (from above).
We substitute these last four equalities in (6) and we get:

$$
\frac{a^{2} b^{2}}{4 l_{3}^{2}}-\frac{c^{2} b^{2}}{4 l_{3}^{2}}=2 P_{2} M \cdot \frac{a b}{2 l_{3}} \cdot \sin \alpha-2 P_{2} M \cdot \frac{c b}{2 l_{3}} \cdot \sin \delta
$$

On the other hand $a \cdot \sin \alpha-c \cdot \sin \delta=b \cdot \sin \varphi$ (according to the lemma), and then from the last equation:

$$
\frac{a^{2} b^{2}}{4 l_{3}^{2}}-\frac{c^{2} b^{2}}{4 l_{3}^{2}}=P_{2} M \cdot(a \cdot \sin \alpha-c \cdot \sin \delta) \cdot \frac{b}{l_{3}}=P_{2} M \cdot \frac{b^{2} \sin \varphi}{l_{3}}
$$

From this immediately follows the equality (5) which we are proving now.
Note: The formula $P_{1} M=\frac{\left|b^{2}-d^{2}\right|}{4 l_{3} \cdot \sin \psi}$ can be analogously proved (P_{1} is the intersection of the perpendicular bisectors of the sides $A B$ and $C D)$.

4. FORMULAS FOR THE DISTANCES FROM THE POINT OF INTERSECTION P_{3} OF THE PERPENDICULAR BISECTORS OF THE DIAGONALS TO THE VERTICES OF THE QUADRILATERAL AND TO ITS BROCARD POINTS K1, K2

Let's first derive formulas for the distances from the intersection point P_{3} of the perpendicular bisectors of the diagonals to the vertices of the quadrilateral. Let's denote $\Varangle C A D=\alpha_{1}, \Varangle C A B=\alpha_{2}, \Varangle A B D=\beta_{1}$, $\Varangle D B C=\beta_{2}, \Varangle B D A=\delta_{2}, \Varangle A C B=\gamma_{1}, \Varangle A C D=\gamma_{2}, \Varangle B D C=\delta_{1}$ (Fig. 9).

Theorem 3. $A B C D$ is a convex quadrilateral, T is the intersection point of its diagonals and $\Varangle A T B=\varphi_{0}$ (Fig. 10). The side lengths $A B, B C, C D, D A$ are a, b, c, d. If P_{3} is the intersection of the perpendicular bisectors of the diagonals $A C$ and $B D$, then:

$$
\begin{align*}
& A P_{3}=C P_{3}=\frac{1}{2 \sin \varphi_{0}} \sqrt{a^{2}+c^{2}-2 a c \cdot \cos \left(\beta_{1}+\delta_{1}\right)}=\frac{1}{2 \sin \varphi_{0}} \sqrt{b^{2}+d^{2}-2 b d \cdot \cos \left(\beta_{2}+\delta_{2}\right)} \tag{7}\\
& B P_{3}=D P_{3}=\frac{1}{2 \sin \varphi_{0}} \sqrt{a^{2}+c^{2}-2 a c \cdot \cos \left(\alpha_{2}+\gamma_{2}\right)}=\frac{1}{2 \sin \varphi_{0}} \sqrt{b^{2}+d^{2}-2 b d \cdot \cos \left(\alpha_{1}+\gamma_{1}\right)}
\end{align*}
$$

Proof: Let $A P_{3}=C P_{3}=x$ (Fig. 10) and C_{1} be such a point, that $C C_{1} \| B D$ and $\Varangle C_{1} B D=\Varangle C D B=\delta_{1}$. Then $B C_{1} C D$ is an isosceles trapezoid, hence $B C_{1}=C D=c$. The point P_{3} is on the perpendicular bisector of the base $B D$, which is a perpendicular bisector of the base $C_{1} C$ as well $\Rightarrow P_{3} C_{1}=P_{3} C=x$. From $P_{3} A=P_{3} C=P_{3} C_{1}=x \Rightarrow$ A, C and C_{1} lie on the circle (c) with center P_{3} and radius $x, \triangle A C C_{1}$ is inscribed in (c), so by the sine theorem $A C_{1}=2 x \cdot \sin \Varangle A C C_{1}$. But $\Varangle A C C_{1}=\Varangle A T B=\varphi_{0}$ (as $B D \| C C_{1}$ by construction)

$$
\begin{equation*}
\Rightarrow A C_{1}=2 x \cdot \sin \varphi_{0} \tag{*}
\end{equation*}
$$

FIGURE 9. Notations for the next figure.

FIGURE 10. Theorem 3 Proof.

From the $\triangle A B C_{1}$, by the cosine theorem, we have:

$$
\begin{equation*}
A C_{1}=\sqrt{A B^{2}+C_{1} B^{2}-2|A B| \cdot\left|C_{1} B\right| \cdot \cos \Varangle A B C_{1}} \tag{8}
\end{equation*}
$$

Since $\Varangle A B C_{1}=\Varangle A B D+\Varangle D B C_{1}=\beta_{1}+\Varangle B D C=\beta_{1}+\delta_{1}, A B=a$ and $B C_{1}=c$, from (8) we get $\left|A C_{1}\right|=\sqrt{a^{2}+c^{2}-2 a c \cdot \cos \left(\beta_{1}+\delta_{1}\right)}$. From the last and $\left({ }^{*}\right)$ we get the expression for $A P_{3}$ and $C P_{3}$ in (7): $\left|A P_{3}\right|=\left|C P_{3}\right|=x=\frac{\left|A C_{1}\right|}{2 \sin \varphi_{0}}=\frac{\sqrt{a^{2}+c^{2}-2 a c \cdot \cos \left(\beta_{1}+\delta_{1}\right)}}{2 \sin \varphi_{0}}$. Similarly, the second expression is obtained.

Then directly from the first of the proven equations (7) we derive:
Corollary: Every convex quadrilateral $A B C D$ satisfies the identity:

$$
a^{2}+c^{2}-2 a c \cdot \cos \left(\beta_{1}+\delta_{1}\right)=b^{2}+d^{2}-2 b d \cdot \cos \left(\beta_{2}+\delta_{2}\right)
$$

We will now get formulas for the distances from the intersection P_{3} of the perpendicular bisectors of the diagonals $A C$ and $B D$ of a convex quadrilateral to its Brocard points K_{1}, K_{2}.

Theorem 4. Let $A B C D$ be a convex quadrilateral with intersection point T of the diagonals $A C$ and $B D$ and $\Varangle B T C=\varphi_{0}$ (Fig. 11). If the side lengths $A B, B C, C D, D A$ are a, b, c, d and $E_{1}, E_{2}, E_{3}, E_{4}$ - the midpoints of $A B, B C, C D, D A$. If $E_{2} E_{4}=l_{1}, E_{1} E_{3}=l_{2}$, then the distances from P_{3} to the Brocard points K_{1} and K_{2} are:

$$
\begin{equation*}
K_{1} P_{3}=\frac{\left|a^{2}-c^{2}\right|}{4 l_{1} \cdot \sin \varphi_{0}}, \quad K_{2} P_{3}=\frac{\left|b^{2}-d^{2}\right|}{4 l_{2} \cdot \sin \varphi_{0}} . \tag{9}
\end{equation*}
$$

Proof: Let the midpoints of the diagonals $A C$ and $B D$ be E and F, the intersection of the extensions of the sides $A B$ and $D C$ be V and let $\Varangle A V D=\psi$ (Fig. 11). Since $\Varangle P_{3} E T=\Varangle P_{3} F T=90^{\circ}$, the quadrilateral $E P_{3} F T$ is inscribed in a circle (c) of diameter $P_{3} T$. I.e., P_{3} lies on the circle through the points E, F and T, i.e. on the Brocard circle of $A B C D$ (by definition 2). From property $2 \Rightarrow K_{1} \in(c) \Rightarrow \Varangle P_{3} K_{1} T=90^{\circ}$. By definition 1 the Brocard point K_{1} is on the circumcircle of ${ }_{\triangle} C D T \Rightarrow \Varangle C K_{1} T=\Varangle C D T=\delta_{1}$ (as inscribed angles). From the last two:

$$
\begin{equation*}
\Varangle P_{3} K_{1} C=\Varangle P_{3} K_{1} T+\Varangle C K_{1} T=90^{\circ}+\delta_{1} . \tag{10}
\end{equation*}
$$

FIGURE 11. Theorem 4. Proof.
On the other hand $\triangle B A K_{1} \sim \triangle D C K_{1}$ (from property 1) $\Rightarrow \Varangle B A K_{1}=\Varangle D C K_{1} \Leftrightarrow \Varangle V A K_{1}=\Varangle D C K_{1}$. Therefore the quadrilateral is inscribed $\Rightarrow \Varangle A K_{1} C=180^{\circ}-\Varangle A V C=180^{\circ}-\psi$. From here and (10) we get:

$$
\Varangle A K_{1} P_{3}=\Varangle A K_{1} C-\Varangle P_{3} K_{1} C=\left(180^{\circ}-\psi\right)-\left(90^{\circ}+\delta_{1}\right)=90^{\circ}-\left(\psi+\delta_{1}\right)
$$

From the $\triangle B D V$, where $\Varangle A B D=\beta_{1}$ is an external angle, $\Varangle B D V=\delta_{1}$ and $\Varangle B V D=\psi$ we get $\psi+\delta_{1}=\beta_{1}$

$$
\begin{equation*}
\Rightarrow \Varangle A K_{1} P_{3}=90^{\circ}-\beta_{1} . \tag{11}
\end{equation*}
$$

From the ${ }_{\Delta} P_{3} K_{1} C$ and $\Delta P_{3} K_{1} A$, by the cosine theorem, we obtain the equations, respectively:

$$
\begin{aligned}
& P_{3} C^{2}=K_{1} P_{3}^{2}+K_{1} C^{2}-2 K_{1} P_{3} \cdot K_{1} C \cdot \cos \Varangle P_{3} K_{1} C, \\
& P_{3} A^{2}=K_{1} P_{3}^{2}+K_{1} A^{2}-2 K_{1} P_{3} \cdot K_{1} A \cdot \cos \Varangle A K_{1} P_{3} .
\end{aligned}
$$

If $|A C|=m,|B D|=n$, from $K_{1} C=\frac{m c}{2 l_{1}}, K_{1} A=\frac{m a}{2 l_{1}}$ (property 3), the last two equations and (10), (11):

$$
\begin{aligned}
& P_{3} C^{2}=K_{1} P_{3}^{2}+\frac{m^{2} c^{2}}{4 l_{1}^{2}}+2 K_{1} P_{3} \frac{m c}{2 l_{1}} \cdot \sin \delta_{1}, \\
& P_{3} A^{2}=K_{1} P_{3}^{2}+\frac{m^{2} a^{2}}{4 l_{1}^{2}}-2 K_{1} P_{3} \frac{m a}{2 l_{1}} \cdot \sin \beta_{1} .
\end{aligned}
$$

We subtract the second of the last two equations from the first one, and because $P_{3} A=P_{3} C$, we get:

$$
\begin{equation*}
\frac{m^{2} a^{2}}{4 l_{1}^{2}}-\frac{m^{2} c^{2}}{4 l_{1}^{2}}=\frac{2 K_{1} P_{3} \cdot m}{2 l_{1}} \cdot\left(c \cdot \sin \delta_{1}+a \cdot \sin \beta_{1}\right) . \tag{12}
\end{equation*}
$$

On the other hand, we have successively (Fig. 11):

$$
\begin{aligned}
& c \cdot \sin \delta_{1}+a \cdot \sin \beta_{1}=\frac{2}{n} \cdot\left(\frac{c n}{2} \cdot \sin \delta_{1}+\frac{a n}{2} \cdot \sin \beta_{1}\right)=\frac{2}{n} \cdot\left(S_{B C D}+S_{A B D}\right)= \\
& =\frac{2}{n} \cdot S_{A B C D}=\frac{2}{n} \cdot \frac{m n \cdot \sin \varphi_{0}}{2}=m \cdot \sin \varphi_{0} .
\end{aligned}
$$

Substituting with the resulting equality in (12), we arrive at the equation:

$$
\frac{m^{2}\left(a^{2}-c^{2}\right)}{4 l_{1}^{2}}=\frac{2 K_{1} P_{3} \cdot m}{2 l_{1}} \cdot m \cdot \sin \varphi_{0}
$$

This result leads to the first of the proven equations (9). The second one is similarly proved.
Note. The next formulas are derived in a similar way:

$$
K_{1} P_{1}=\frac{\left|m^{2}-n^{2}\right|}{4 l_{1} \cdot \sin \psi}, K_{2} P_{2}=\frac{\left|m^{2}-n^{2}\right|}{4 l_{2} \cdot \sin \varphi} .
$$

Final words. The intersection points of the bisectors of the opposite sides and bisectors of the diagonals of any quadrilateral have a number of other interesting properties as well. They are closely related to a pair of remarkable points in a quadrilateral called Antibrocarians and to a generalization of the circumcenter of an inscribed quadrilateral, called its second pseudocenter. We will discuss this at length in a separate article.

ACKNOWLEDGEMENTS

The authors would like to thank the Research and Development Sector at the Technical University of Sofia for the financial support.

REFERENCES

1. H. M. Haimov, Brocard points of a quadrilateral (Mathematics, Sofia, Issue № 5 for 2005), pp. 15-21.
2. V. N. Nenkov, St. T. Stefanov and H. Haimov. Formulas for the distances from the Brocard points and the Miquel point in the quadrilateral to its vertices and to the midpoints of its sides and of its diagonals (Mathematics and Informatics, Sofia, Issue № 3 for 2019), pp. 305-324, ISSN 1310-2230 [In Bulgarian].
3. St. T. Stefanov, Second pseudocenter of the quadrilateral (Mathematics and Informatics, Sofia, Issue № 3 for 2017) pp. 252-261, ISSN 1310-2230 [In Bulgarian].
4. S. Iv. Grozdev and V. N. Nenkov, Fans of circles in inscribed polygons (Mathematics and Informatics, Sofia, Issue № 2 for 2017) pp. 181-201 [in Bulgarian].
5. V. N. Nenkov, St. T. Stefanov and H. M. Haimov, Geometry of quadrilateral, Miquel point, Inverse isogonality, (Mathematics and Informatics, Sofia, Issue № 1 for 2017) pp. 81-93 [in Bulgarian].
6. S. Iv. Grozdev, For High Achievements in Mathematics: The Bulgarian Experience (Theory and Practice) (ADE, Sofia, 2007), ISBN 978-954-92139-1-1.
7. T. F. Sergeeva, M. V. Shabanova and S. Iv. Grozdev, Foundation of dynamic geometry (ASOU, Moscow, 2014) [In Russian].
8. V. N. Nenkov, Mathematical competence increase through dynamic geometry (Archimedes 2000, Sofia, 2020), ISBN 978-954-779-291-3. [In Bulgarian].
9. R. N. Nikolaev, T. V. Milkova and K. Chalakova. Combinatorial problems related to a triangle. (Mathematics and informatics, Sofia, Issue № 5 for 2018) pp. 506-517 [In Bulgarian].
10. N. Hr. Pavlova, An idea for Geometrical Modelling in Combinatory Problems (Mathematics and informatics, Sofia, № 2 for 2019), pp. 194-202 [In Bulgarian] - https://www.ceeol.com/search/article-detail?id=760970.
11. N. Pavlova, D. V. Marchev and K. V. Harizanov, Geothnk Project. Proceedings of the Scientific Conference MATTEX 2014 of Shumen's university "Episkop Konstantin Preslavsky", Volume № 1, pp. 245-249 (2014), ISSN 1314-3921 [In Bulgarian] - https://docplayer.bg/151451133-geothnk-pr.html (Last access 03.07.2022).
12. N. Hr. Pavlova, Didactic Game "Possible Cross Sections" (Mathematics and informatics, Sofia, Issue № 4 for 2020), pp. 391-397 - https://www.ceeol.com/search/article-detail?id=894166 (Last accessed on 03.07.2022).
