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Abstract. Here we consider new geometrical objects and their properties, obtained in our previous works and several 

theorems, which provide new formulas for distances between new and traditional remarkable points in a quadrilateral, 

and other new relationships, namely: 1) the distances from (the intersection points of the perpendicular bisectors of the 

opposite sides) to the (vertices and the point of Miquel of the quadrilateral); and 2) the relationships between the: (side 

lengths and the measures of the angles between adjacent and opposite quadrilateral’s sides), (distances between the 

intersection point of the perpendicular bisectors of the diagonals and the quadrilateral’s vertices with the side lengths 

and the measures of the angles between the two diagonals and between each diagonal with each of it’s adjacent sides), 

(side lengths and the angles between the two diagonals and between each diagonal and each its adjacent side) and 

(distances from the diagonals’ intersection point to the Brocard points with the side-lengths and the midline segments). 

 

INTRODUCTION 

One of the most easily defined remarkable points in the quadrilateral is the intersection point of the bisectors 

of each two opposite sides and the intersection of the bisectors of the diagonals. They are characterized by a number 

of interesting properties and are closely related to some of the other remarkable points in the quadrilateral. For 

brevity, we will call the intersection P1 of the perpendicular bisectors of the sides AB and CD of a quadrilateral 

ABCD (Fig. 1) a bysector point corresponding to AB and CD, and the intersection P2 of the perpendicular bisectors 

of the sides AD and BC – a bysector point corresponding to AD and ВС. The intersection point P3 of the bisectors 

of the diagonals AC and BD we call a bysector point corresponding to the diagonals. We guarantee the existence 

and uniqueness of the all bysector points, assumming the quadrilateral ABCD has no two parallel sides. As we will 

see, there are simple formulas for the distances from the bysector points P1, P2 and P3 to the vertices of ABCD, to 

its Miquel and Brocard points. We will summarize the properties of these points, which we will use. 

 

  



 

1. PROPERTIES OF THE BROCARD POINTS AND THE MIQUEL POINT 

Let ABCD be a convex quadrilateral and T be the point of intersection of its diagonals (Fig. 2).  

Definition 1. The second common point K1 of the circumcircles of ΔABT and ΔCDT is called a Brocard point 

of ABCD, corresponding to its sides AB and CD.  

The Brocard point K2, corresponding to AD and BC, is analogously defined. K1 and K2 have these properties: 

Property 1. Form similar triangles with their resp. sides:
1 1АK В CK D , 

2 2AK D CK B  (Fig. 2) ([1]). 

Definition 2. The circle (c) through the midpoints E and F of the diagonals and their intersection point T is 

called a Brocard circle of the quadrilateral (Fig. 3). 

Property 2. The Brocard points K1 and K2 lie on the Brocard circle of the quadrilateral ([2]). 
 

          
Quadrilateral’s: FIGURE 1. Bisector points.       FIGURE 2. Brocardians.                      FIGURE 3. Brocard circle. 

 

Property 3. Let ABCD be a convex quadrilateral and E1, E2, E3, E4 be the midpoints of its sides AB, BC, CD, 

DA, and а, в, с, d – their lengths. If m, n are the lengths of the diagonals AC, BD, and 
2 4 1E E l=  (Fig. 3), then: 
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Let us recall the Definition of a Miquel point: The extended sides AD and BC of a convex quadrilateral ABCD 

intersect at a point U, and the extended sides AB and DC – at a point V. The circumcircles of the ΔABU, ΔDCU, 

ΔADV and ΔBCV meet at a point M. It is called a Miquel point of the quadrilateral (Fig. 4). 

The Miquel point of a quadrilateral is characterized by the following properties: 

Property 4. ABCD is a convex quadrilateral, E and F – midpoints of it’s diagonals AC and BD, 
3EF l=  and 

the side’s lengths AB, BC, CD, DA are a, b, c, d. The distances from the Miquel point M to its vertices are ([2]): 
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              FIGURE 4. Miquel point of a quadrilateral.                 FIGURE 5. Miquel point M on the Brocard circles to its sides. 

 

Definition 3. ABCD is a convex quadrilateral, the extensions of its sides AD and BC intersect at the point U 

(Fig. 5). If E2 и E4 are the midpoints of AD and BC, then the circle through E2, E4 and U we call a Brocard circle 

of ABCD, corresponding to the sides AD and BC. A Brocard circle, corresponding to AB and CD, is similarly 

defined. 

Property 5. The Miquel point M of a quadrilateral lies on the Brocard circles corresp. to its sides (Fig. 5) ([3]). 
 

  



 

2. FORMULAS FOR THE DISTANCES FROM THE QUADRILATERAL’S VERTICES TO 

THE INTERSECTIONS OF PERPENDICULAR BISECTORS’ OPPOSITE SIDES  

Theorem 1. ABCD is a convex quadrilateral, the extensions of its sides AD and BC intersect at a point U, 

AUB =  (Fig. 6a
). The lengths of the sides AB, BC, CD, DA are a, b, c, d, the measures of the angles at A, B, 

C, D – α, β, γ, δ. If P2 is the intersection of the perpendicular bisectors of AD and BC, then it follows that 

2 2 2 2

2 2 2 2

1 1
2 .cos( ), 2 .cos( )

2sin 2sin
P A P D a c ac P B P C a c ac   

 
= =  + − − = =  + − −      (1) 

Proof: If D is between A and U (Fig. 6a
),  and D1 is such that 

1AD BC  and 

1D CB ABC = = , then it follows for the isosceles trapezoid ABCD that  and that P2 lies on 

the perpendicular bisector of its base BC, which is a perpendicular bisector of  too. Hence 
2 1 2P D P A x= = . 

From 
2 1 2 2P D P D P A x= = =  follows that A, D1, D lie on a circle (c) of center P2 and radius x, i.e. that ΔD1AD is 

inscribed in (c), and 
1D AD AUB = =  (as ). From ΔD1AD, by the sine rule, 

1 2 .sinD D x = . 

       

FIGURE 6
а

.                                                                         FIGURE 6
b

. 
 

There are three possible cases for the position of the point D1 – it may lie on:  

1) the half-plane with contour the line CD which contains the vertex B (fig. 6а
). In this case we have: 

1 1D CD DCB D CB DCB ABC  = − = − = −  and by the cosine rule from the 
1D DC   

( )2 2 2 2

1 1 1 12 . cos 2 .cosD D D C DC D C DC D CD a c ac   = + − = + − − ;   

2) the half-plane with contour CD, which does not contain B. In this case the expression for DD1 is the same;  

3) CD (Fig. 6b
). Then , which  , because  

 and ( )cos 1 − = . In all three cases . From this and from 

1 2 .sinD D x =    , which is the first of the 

equations (1) which we prove now. The second equation can be similarly proved. 

Note. Analogously, the following formulas are obtained for the distances from the intersection P1 of the 

perpendicular bisectors of the sides AB and CD to the vertices of the quadrilateral:  

2 2
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2 2
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P A PB b d bd

PD PC b d bd
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
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= =  + −  −

= = + −  −

  ,                 where ;AB DC = . 

2 2P A P D x= =

1CD AB a= =

1AD

1D A BC

1 1D D DC DC a c= − = −
2 2

1 2 cos( )D D a c ac  = + −  −

0 − = 2 2

1 2 cos( )D D a c ac  = + −  −

2 21
2 2

1
2 cos( )

2sin 2sin

D D
P A P D x a c ac  

 
= = = =  + −  −



 

3. FORMULAS FOR THE DISTANCES FROM THE INTERSECTIONS OF THE 

PERPENDICULAR BISECTORS OF OPPOSITE SIDES TO THE MIQUEL POINT  
Lemma. ABCD is a convex quadrilateral. The extensions of AD and BC meet at a point U and those of the sides 

AB and DC – at a point V (C lies between D and V and between B and U). Let the sides lengths AB, BC, CD, DA 

be a, b, c , d, and the measures of the angles at A and D –  and . If AUB = , this equality holds (Fig. 7): 

                                                         (2) 

Proof: Let T be the intersection of the diagonals AC and BD, and let AVD =  (Fig. 7). We have then: 

        

i.e.:                                                                                              (3)  

 
FIGURE 7. Lemma proof. 

Further: from the ΔBCV and ΔDCU, by the sine rule: 
sin sin BCV

b BV


=  and 

sin sin UCD

c UD


= , 

i.е.: sin sin
UD

UCD
c

=  . 

As BCV UCD= , we define: 
.sin .sin

sin sin
b BCV b UCD b UD

BV BV BV c
 = = =    

Substituting in (3) we obtain: 

                                     (4) 

On the other hand, according to Menelaus' theorem for ΔAVD and the line UCB we have: 

 

As AB = a, DC = c, AU = d + UD, hence we get:  

i.е.:                                                            

From (4) and the last equality, it follows that  

Thus (2) is proved.  

Theorem 2. ABCD is a convex quadrilateral, the extensions of AD and BC meet at the point U, AUB = , 

the lengths of AB and DC are a and c, and the distance between the midpoints of the diagonals is l3. The distance 

between the intersection P2 of the perpendicular bisectors of AD and BC, and the Miquel point M (Fig. 8) is: 

                                                                      (5) 
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Proof: Let the intersection of the extended sides AB and DC be V, AVD =  (Fig. 8). We’ll consider only 

the case when C lies between D and V, and between U and B. If the midpoints of BC and AD are E2 and E4, then 

2 4 2 2 90P E U P E U= =  . Therefore P2, E2, U and E4 lie on a circle (k) with diameter P2U. As E2, E4, U lie on 

(k), it is the Brocard circle, corresponding to AD and BC (by definition 3). Therefore, from property 5, ( )M k , 

from where we get 
2 90UMP =  . Miquel 's point M lies on ΔDCU’s circumcircle (by definition). From the 

inscribed quadrilateral DCMU: UMC CDA = = . Let 
2MP→  lies between MU →

 and MC→
, from the last 

equations 
2 2 90P MC UMC UMP = − = −  . As M lies on the circumcircle of ΔBCV (by definition), and 

then BMC BVC = = , therefore ( )2 2 90P MB P MC BMC  = + = −  + . The sum of the angles in 

the ΔAVD = 180o ( )90 90   − + = −
2 90P MB  = − . By the cosine rule applied to the 

2P MC  and 

2P MB , we obtain: 
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2 2 2 2

2 2 2

2 2 2 2
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2 . .
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P B P M MB P M MB P MB

= + −
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FIGURE 8. Theorem 2 Proof. 

Since P2C = P2B, with subtraction of the last two equations, we find: 

( )2 2

2 2 2 22 . .cos 2 . .cos 6MB MC P M MB P MB P M MC P MC− = −  

But 

32
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l
= , 

32

cb
MC

l
=  (from the property 4), 

2 90P MB = −  and 
2 90P MC = −   (from above). 

We substitute these last four equalities in (6) and we get: 

 

On the other hand  (according to the lemma), and then from the last equation: 

 

From this immediately follows the equality (5) which we are proving now. 

Note: The formula  can be analogously proved (P1 is the intersection of the perpendicular 

bisectors of the sides AB and CD). 
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4. FORMULAS FOR THE DISTANCES FROM THE POINT OF INTERSECTION P3 

OF THE PERPENDICULAR BISECTORS OF THE DIAGONALS TO THE 

VERTICES OF THE QUADRILATERAL AND TO ITS BROCARD POINTS K1, K2 

Let’s first derive formulas for the distances from the intersection point P3 of the perpendicular bisectors of the 

diagonals to the vertices of the quadrilateral. Let’s denote 
1 2 1, , ,CAD CAB ABD  = = =  

2 ,DBC = 2 1 2 1, , ,BDA ACB ACD BDC   = = = =  (Fig. 9). 

Theorem 3. ABCD is a convex quadrilateral, T is the intersection point of its diagonals and 
0ATB =  (Fig. 

10). The side lengths AB, BC, CD, DA are a, b, c, d. If P3 is the intersection of the perpendicular bisectors of the 

diagonals AC and BD, then: 

( ) ( )

( ) ( )

2 2 2 2

3 3 1 1 2 2

0 0

2 2 2 2

3 3 2 2 1 1

0 0

1 1
2 .cos 2 .cos

2sin 2sin

1 1
2 .cos 2 .cos

2sin 2sin

AP CP a c ac b d bd

BP DP a c ac b d bd

   
 

   
 

= = + − + = + − +

= = + − + = + − +

          (7) 

Proof: Let 
3 3AP CP x= =  (Fig. 10) and C1 be such a point, that 

1CC BD  and 
1 1C BD CDB = = . Then 

1BC CD  is an isosceles trapezoid, hence 
1BC CD c= = . The point 

3P  is on the perpendicular bisector of the base 

BD, which is a perpendicular bisector of the base 
1C C  as well 

3 1 3PC PC x = = . From 
3 3 3 1P A PC PC x= = =   

A, C and C1 lie on the circle (c) with center P3 and radius х, ΔACC1 is inscribed in (c), so by the sine theorem 

1 12 .sinAC x ACC= . But 
1 0ACC ATB = =  (as 

1BD CC  by construction) 

1 02 .sinAC x  = .                                                                   (*) 

                      

FIGURE 9. Notations for the next figure.                               FIGURE 10. Theorem 3 Proof. 

 

From the 
1ABC , by the cosine theorem, we have:  

( )2 2

1 1 1 12 . .cos 8AC AB C B AB C B ABC= + −  

Since 
1 1 1 1 1ABC ABD DBC BDC  = + = + = + , AB a=  and 

1BC c= , from (8) we get 

( )2 2

1 1 12 .cosAC a c ac  = + − + . From the last and (*) we get the expression for AP3 and CP3 in (7):

( )2 2

1 11

3 3

0 0

2 .cos

2sin 2sin

a c acAC
AP CP x

 

 

+ − +
= = = = . Similarly, the second expression is obtained.  

Then directly from the first of the proven equations (7) we derive: 

Corollary: Every convex quadrilateral ABCD satisfies the identity: 

( ) ( )2 2 2 2

1 1 2 22 .cos 2 .cosa c ac b d bd   + − + = + − +  

We will now get formulas for the distances from the intersection P3 of the perpendicular bisectors of the 

diagonals AC and BD of a convex quadrilateral to its Brocard points K1, K2. 



 

Theorem 4. Let ABCD be a convex quadrilateral with intersection point T of the diagonals AC and BD and 

0BTC =  (Fig. 11). If the side lengths AB, BC, CD, DA are a, b, c, d and 
1 2 3,  ,E E E , 

4E  – the midpoints of 

AB, BC, CD, DA. If 
2 4 1 1 3 2,E E l E E l= = ,  then the distances from P3 to the Brocard points K1 and K2  are: 

2 2 2 2

1 3 2 3

1 0 2 0

, .
4 sin 4 sin

a c b d
K P K P

l l 

− −
= =

 
                                               (9)  

Proof: Let the midpoints of the diagonals AC and BD be E and F, the intersection of the extensions of the sides 

AB and DC be V and let AVD =  (Fig. 11). Since 
3 3 90P ET P FT= = , the quadrilateral 

3EP FT  is 

inscribed in a circle (c) of diameter P3T. I.e., P3 lies on the circle through the points E, F and T, i.e. on the Brocard 

circle of ABCD (by definition 2). From property 2 ( )1 3 1 90K c P K T   = . By definition 1 the Brocard point 

K1 is on the circumcircle of 
1 1CDT CK T CDT  = =   (as inscribed angles). From the last two: 

3 1 3 1 1 190P K C P K T CK T = + = + .                                            (10) 

 
FIGURE 11. Theorem 4. Proof. 

On the other hand 
1 1BAK DCK  (from property 1) 

1 1BAK DCK = 
1 1VAK DCK= . 

Therefore the quadrilateral is inscribed 
1 180 180AK C AVC  = − = − . From here and (10) we get: 

( ) ( ) ( )1 3 1 3 1 1 1180 90 90AK P AK C P K C    = − = − − + = − +  

From the ΔBDV, where 
1ABD =  is an external angle, 

1BDV =  and BVD =  we get 
1 1  + =  

1 3 190AK P  = − .                                                             (11) 

From the 
3 1P K C  and 

3 1P K A , by the cosine theorem, we obtain the equations, respectively: 
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3 1 3 1 1 3 1 3 1

2 2 2

3 1 3 1 1 3 1 1 3
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= + −
 

If AC m= , BD n= , from 
1

12

mc
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l
= , 

1

12

ma
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l
=  (property 3), the last two equations and (10) , (11): 
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m a ma
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


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We subtract the second of the last two equations from the first one, and because 
3 3P A PC= , we get: 

( )
2 2 2 2

1 3
1 12 2

1 1 1

2 .
.sin .sin

4 4 2

K P mm a m c
c a

l l l
 − =  + .                                   (12) 

On the other hand, we have successively (Fig. 11): 

( )1 1 1 1

0
0

2 2
.sin .sin sin sin
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 
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=  =  = 

 



 

Substituting with the resulting equality in (12), we arrive at the equation: 

( )2 2 2

1 3
02

1 1

2 .
.sin

4 2

m a c K P m
m

l l


−
=   

This result leads to the first of the proven equations (9). The second one is similarly proved. 

Note. The next formulas are derived in a similar way: 
2 2 2 2

1 1 2 2

1 2

,
4 .sin 4 .sin

m n m n
K P K P

l l 

− −
= = . 

 

Final words. The intersection points of the bisectors of the opposite sides and bisectors of the diagonals of any 

quadrilateral have a number of other interesting properties as well. They are closely related to a pair of remarkable 

points in a quadrilateral called Antibrocarians and to a generalization of the circumcenter of an inscribed 

quadrilateral, called its second pseudocenter. We will discuss this at length in a separate article. 
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