Configurations of Pedal Circles of an Arbitrary Point in the Plane of a Polygon (Continuation)

Veselin N. Nenkov ${ }^{1, \mathrm{a})}$, Sava Iv. Grozdev ${ }^{2, b}$, Asen P. Velchev ${ }^{3, c}$, Rayna M. Alashka ${ }^{4, \mathrm{~d})}$, Stanislav T. Stefanov ${ }^{5, \mathrm{e})}$ and Haim M. Haimov ${ }^{6}$
${ }^{1}$ Nikola Vaptsarov Naval Academy, Department of Mathematics and Physics, Faculty of Engineering, str. ,,Vasil Drumev " № 73, Varna 9002, Bulgaria
${ }^{2}$ University of Plovdiv "St. Paisii Hilendarski", Faculty of Mathematics and Informatics, "Bulgaria" blvd. № 236, Plovdiv 4027, Bulgaria
${ }^{3}$ Technical University of Sofia, Faculty of Applied Mathematics and Informatics, "Kliment Ohridski" blvd. №8, Sofia 1000, Bulgaria
${ }^{4}$ Sofia University "St. Kliment Ohridski", Faculty of Mathematics and Informatics, "James Bourchier" blvd. № 5, Sofia 1164, Bulgaria
${ }^{5}$ University of Architecture, Civil Engineering and Geodesy, Faculty of Transport Engineering, "Hristo Smirnenski" blvd. № 1, Sofia 1164, Bulgaria
${ }^{6} 16$ Bratia Shkorpil St., Varna 9000, Bulgaria
a) vnenkov@mail.bg
${ }^{\text {b) }}$ sava.grozdev@gmail.com
${ }^{\text {c) }}$ Corresponding author: asen_v@abv.bg
${ }^{\text {d) }}$ ralashka@fmi.uni-sofia.bg
${ }^{\text {e) }}$ stanislav.toshkov@abv.bg

Abstract

Here we consider the mutual disposition of the pedal circles corresponding to an arbitrary point in the plane of an inscribed hexagon, with respect to a part of the triangles formed by the hexagon's sides and diagonals. Previously we have defined the Simpson circle of an arbitrary pentagon (see [1]). Here we prove that the Simpson circles of the six pentagons, formed by connecting each five among the six vertices of the inscribed hexagon, intersect at one point. Along the way, we establish an interesting property of the Simpson circle of an inscribed pentagon.

INTRODUCTION

In [1] we consider configurations of pedal circles of an arbitrary point in the plane of a convex quadrilateral/ pentagon/ with respect to the triangles, having as vertices consecutive vertices of $i t$. There we define the concepts pedal image of a point with respect to a quadrilateral, Simpson circle and Simpson pentagon of a point with respect to a pentagon. Here we show that the Simpson circles of any point on the plane of an inscribed hexagon, with respect to the pentagons formed by its successive vertices, meet at one point, using these definitions and statements, formulated and proven in [1] and [3]:

A pedal circle of a point, which does not lie on the circumcircle of a triangle, we call the circle passing through the orthogonal projections of the point on the lines, which contain the sides of the triangle.

A polygon formed by part of the vertices of another polygon, we called its peak polygon, and a polygon formed by consecutive vertices of the initial polygon - its peripheral polygon.

Theorem 1. The pedal circles $\left(c_{1}\right),\left(c_{2}\right),\left(c_{3}\right)$ and $\left(c_{4}\right)$ of any point X in the plane of the quadrilateral $A B C D$, which does not lie on the same circle with any three of its vertices, with respect to its peak triangles $A B C, B C D$, $C D A$ and $D A B$ meet at one point $Y($ Fig. 1). This point Y we called the pedal image of X with respect to $A B C D$.

Theorem 2. The pedal images $A_{1}, B_{1}, C_{1}, D_{1}$ and E_{1} of an arbitrary point X in the plane of a random pentagon $A B C D E$ with respect to its peripheral quadrilaterals $E B C D, A C D E, C E A B$, etc., are concyclic (Fig. 2). We called the respective circle the Simpson's circle for the point X with respect to the pentagon $A B C D E$, and the pentagon $A_{l} B_{l} C_{l} D_{l} E_{1}-$ Simpson's pentagon for X.

NEW RESULTS

Theorem 3. $A B C D E F$ is an inscribed hexagon, X - a point on its plane, not on its circumcircle. Simpson's circles $k_{\mathrm{A}}, k_{\mathrm{B}}, k_{\mathrm{c}}, k_{\mathrm{D}}, k_{\mathrm{E}}$ and k_{F} for X, relative to the hexagon's peripheral pentagons $B C D E F, C D E F A$, etc., intersect at one point Y (Fig. 3).

FIGURE 1. Shows Theorem 1.

FIGURE 2. Shows Theorem 2.

Before proving this statement, we will introduce some notations and prove several lemmas:
Let $A B C D E$ be a convex pentagon and X - a point in its plane (Fig. 4). Let $A_{0}, B_{0}, C_{0}, D_{0}, E_{0}$ be the orthogonal projections of X on the lines of the sides $A B, B C, C D, D E, E A$ and those on the lines along the diagonals $E B, A C$, $B D, C E, D A$ of the pentagon $-A_{2}, B_{2}, C_{2}, D_{2}$ and E_{2}. Let denote the pedal images of X relative to the peripheral quadrilaterals $B C D E, A C D E, A B D E, A B C E, A B C D$ by $A_{1}, B_{1}, C_{1}, D_{1}$ and E_{1} (Fig. 2), resp.

Definition 1. A vertex of the pentagon $A B C D E$, which does not belong to its peripheral quadrilateral, we call additional to the quadrilateral, and the quadrilateral - additional to the vertex (D is additional to $E A B C$) (Fig. 2).

Using this definition, we will first define a correspondence between the peripheral triangles of a pentagon $A B C D E$ and the peripheral triangles of its Simpson pentagon $A_{1} B_{1} C_{1} D_{1} E_{1}$ for an arbitrary point X in its plane. Take an arbitrary peripheral triangle of $A B C D E$, say $\triangle A B C$ (Fig. 2) and the three peripheral quadrilaterals $B C D E$, $C D E A, D E A B$, additional to the vertices A, B, C. The $\triangle A_{1} B_{1} C_{1}$ with vertices the pedal images A_{1}, B_{1}, C_{1} of X, with respect to these peripheral quadrilaterals, we call conjugate to $\triangle A B C$.

FIGURE 3. Shows Theorem 3.

FIGURE 4. Convex pentagon $A B C D E \&$ the pedal images of point X.

In the proof of Theorem 3 we will use a property of Simpson's pentagon for an arbitrary point X in the plane of a circumscribed pentagon, but before formulating this property, we will prove several auxiliary statements:

Lemma 1. Let $A B C$ be an arbitrary triangle and X be an arbitrary point, which lies: in the half-plane with contour the line $B C$, which does not contain the triangle, inside the angle $B A C$ and not on the circumcircle of $\triangle A B C$ (Fig. 5). If A_{1}, B_{1} and C_{1} are the orthogonal projections of X, respectively on the lines $B C, C A$ and $A B$, then for the angles of the pedal $\triangle A_{1} B_{1} C_{1}$ of the point X with respect to $\triangle A B C$ are satisfied these equations:

$$
\begin{align*}
& \Varangle A_{1} C_{1} B_{1}=\Varangle A X B-\Varangle A C B, \\
& \Varangle A_{1} B_{1} C_{1}=\Varangle A X C-\Varangle A B C, \tag{1}\\
& \Varangle B_{1} A_{1} C_{1}=360^{\circ}-\Varangle B X C-\Varangle B A C .
\end{align*}
$$

Proof 1. Obviously $\Varangle A_{1} C_{1} B_{1}=\Varangle X C_{1} B_{1}-\Varangle X C_{1} A_{1} \quad(\nabla)$ (Fig.5). From the inscribed quadrilateral $A C_{1} X B_{1}$ $\Rightarrow \Varangle X C_{1} B_{1}=\Varangle X A B_{1} \quad(*)$ and $\Varangle X C_{1} A_{1}=\Varangle X B A_{1} \quad(* *)$ (from the inscribed quadrilateral $A_{1} C_{1} B X$).

FIGURE 5. Shows Lemma 1.

FIGURE 6. Shows Lemma 2.

Substituting the left sides of $(*),\left({ }^{* *}\right)$ with their right sides in (∇), we get:

$$
\Varangle A_{1} C_{1} B_{1}=\Varangle X C_{1} B_{1}-\Varangle X C_{1} A_{1}=\Varangle X A B_{1}-\Varangle X B A_{1}=\Varangle X A C-\Varangle X B C,
$$

i.e.:

$$
\begin{equation*}
\Varangle A_{1} C_{1} B_{1}=\Varangle C A X-\Varangle C B X \tag{2}
\end{equation*}
$$

On the other hand:

$$
\begin{aligned}
& \Varangle A X B=180^{\circ}-\Varangle B A X-\Varangle A B X=180^{\circ}-(\Varangle C A B-\Varangle C A X)-(\Varangle A B C+\Varangle C B X)= \\
& =\left(180^{\circ}-\Varangle C A B-\Varangle A B C\right)+\Varangle C A X-\Varangle C B X=\Varangle A C B+\Varangle C A X-\Varangle C B X,
\end{aligned}
$$

i.e.:

$$
\Varangle A X B=\Varangle A C B+\Varangle C A X-\Varangle C B X
$$

From the last one we get: $\Varangle A X B-\Varangle A C B=\Varangle C A X-\Varangle C B X$.
As the right-hand sides of the last equation and equation (2) are the same, by equating their's left sides, we get:

$$
\Varangle A_{1} C_{1} B_{1}=\Varangle A X B-\Varangle A C B
$$

Thus we proved the first of the equations (1). The other two can be proved analogously. Let us now recall this:
Definition 2. Two lines through the vertex of an arbitrary angle are called isogonal with respect to it, if they form equal angles with its angle bisector, and therefore with the arms of the angle.

Lemma 2. Let X be an arbitrary point in the plane of an inscribed quadrilateral $A B C D$ (Fig. 6), not lying on its circumcircle and different from its Miquel's point. Further: let M, N, P and Q be X 's orthogonal projections on the lines $A B, B C, C D$ and $D A$ which contain the quadrilateral's respective sides. X and its pedal image Y with respect to the quadrilateral $A B C D$ lie on isogonal lines with respect to each of the angles of the quadrilateral $M N P Q$.

This lemma is proven in [2] (see the corollary of Theorem 8 at the end of the paper).
Lemma 3. Let $A_{l} B_{l} C_{l} D_{l} E_{l}$ be the Simpson's pentagon for the point X with respect to an inscribed pentagon $A B C D E$. Let consider an arbitrary angle of the first one, say $\Varangle E_{1} A_{1} B_{1}$ (Fig. 7). It is the angle of the peripheral $\triangle E_{1} A_{1} B_{1}$ of the pentagon $A_{1} B_{l} C_{l} D_{l} E_{l}$. Let consider the peripheral $\triangle E A B$ of the pentagon $A B C D E$, conjugate to $\triangle E_{1} A_{1} B_{1}$ and the corresponding angle of the pedal $\triangle C_{0} A_{2} D_{0}$ of the point X relative to it - namely $\Varangle C_{0} A_{2} D_{0}$. The following equalities hold: $\Varangle E_{1} A_{1} B_{1}=\Varangle C_{0} A_{2} D_{0}, \Varangle A_{1} B_{1} C_{1}=\Varangle D_{0} B_{2} E_{0}, \Varangle B_{1} C_{1} D_{1}=\Varangle A_{0} C_{2} E_{0}, \ldots$

Proof 3. The vertex A_{l} of the Simpson's pentagon $A_{1} B_{l} C_{l} D_{l} E_{l}$ for the point X is the pedal image of X with respect to the quadrilateral $B C D E$ (Fig. 7) and B_{1} is the pedal image of X with respect to $C D E A . \triangle E C D$ is a peak triangle in both quadrilaterals, so the pedal images A_{1} and B_{1} of X relative to them, lie on the pedal circle k of the point X relative to this triangle. The circle k also contains the orthogonal projections of X with respect to the sides $C D$ and $E D$ of $\triangle E C D$ - the points A_{0} and B_{0}. Therefore, the quadrilateral $A_{1} A_{0} B_{0} B_{1}$ is inscribed in k. Therefore, if P is an arbitrary point on the continuation of $A_{0} A_{1}$, then $\Varangle P A_{1} B_{1}=\Varangle B_{1} B_{0} A_{0}$. Analogically, $\Varangle P A_{1} E_{1}=\Varangle E_{1} E_{0} A_{0}$ (from the inscribed quadrilateral $A_{1} E_{1} E_{0} A_{0}$). From the last two equations we get:

$$
\Varangle E_{1} A_{1} B_{1}=\Varangle P A_{1} E_{1}+\Varangle P A_{1} B_{1}=\Varangle E_{1} E_{0} A_{0}+\Varangle B_{1} B_{0} A_{0}
$$

FIGURE 7. Shows Lemmas 3, 4 and 5, and Theorem 4.
The pedal image B_{1} of X with respect to the inscribed quadrilateral $C D E A$ and the point X lie on lines, isogonal with respect to the $\Varangle A_{0} B_{0} C_{0}$ of the pedal quadrilateral $A_{0} B_{0} C_{0} B_{2}$ of X with respect to $C D E A$ (according to Lemma 2). Therefore $\Varangle B_{1} B_{0} A_{0}=\Varangle X B_{0} C_{0}$ (according to definition 2). Analogically, from the quadrilateral $A_{0} E_{0} D_{0} E_{2}$ $\Rightarrow \Varangle E_{1} E_{0} A_{0}=\Varangle X E_{0} D_{0}$. We substitute the last two equations in the above and get:

$$
\Varangle E_{1} A_{1} B_{1}=\Varangle E_{1} E_{0} A_{0}+\Varangle B_{1} B_{0} A_{0}=\Varangle X E_{0} D_{0}+\Varangle X B_{0} C_{0}
$$

On the other hand $\Varangle X E_{0} D_{0}=\Varangle X B D_{0}$ (from the inscribed quadrilateral $X D_{0} B E_{0}$) and $\Varangle X B_{0} C_{0}=\Varangle X E C_{0}$ (from the inscribed quadrilateral $X C_{0} E B_{0}$). We substitute these equations in the above and get:

$$
\Varangle E_{1} A_{1} B_{1}=\Varangle X E_{0} D_{0}+\Varangle X B_{0} C_{0}=\Varangle X B D_{0}+\Varangle X E C_{0} .
$$

On the other hand, from the quadrilateral $A B X E$, we have:

$$
\Varangle X B D_{0}+\Varangle X E C_{0}=\Varangle X B A+\Varangle X E A=360^{\circ}-\Varangle E X B-\Varangle E A B .
$$

Therefore:

$$
\Varangle E_{1} A_{1} B_{1}=\Varangle X B D_{0}+\Varangle X E C_{0}=360^{\circ}-\Varangle E X B-\Varangle E A B .
$$

At the same time, for the pedal $\Delta C_{0} A_{2} D_{0}$ of X with respect to $\triangle E A B$ (according to Lemma 1):

$$
\Varangle C_{0} A_{2} D_{0}=360^{\circ}-\Varangle E X B-\Varangle E A B .
$$

Comparing the right sides of the last two equations we get the first equation proved: $\Varangle E_{1} A_{1} B_{1}=\Varangle C_{0} A_{2} D_{0}$. The other equations can be analogically proved.

Lemma 4. Let $A B C D E$ be an inscribed pentagon and X - a point not on its circumcircle. For the initially accepted notations, the following equations are satisfied (Fig. 7):

$$
\begin{equation*}
\Varangle A_{2} C_{0} D_{0}=\Varangle B_{0} C_{0} E_{2}=\Varangle 1, \Varangle B_{2} D_{0} E_{0}=\Varangle A_{2} D_{0} C_{0}=\Varangle 2, \Varangle C_{2} E_{0} A_{0}=\Varangle B_{2} E_{0} D_{0}=\Varangle 3 \tag{3}
\end{equation*}
$$

and so on (i.e. the adjacent angles of the pedal triangles of point X relative to the successive peripheral triangles of $A B C D E$ are equal to each other).

Proof 4. $A_{2} C_{0} D_{0}$ is the pedal triangle of X with respect to $\triangle A B E$ (Fig. 7), so by Lemma 1 we have:

$$
\Varangle A_{2} C_{0} D_{0}=\Varangle A X E-\Varangle A B E
$$

Analogically, from $\triangle A D E$, again by Lemma 1, we have:

$$
\Varangle B_{0} C_{0} E_{2}=\Varangle A X E-\Varangle A D E
$$

Since $\Varangle A B E=\Varangle A D E$ (as inscribed angles), comparing the right sides of the last two equations, we get $\Varangle A_{2} C_{0} D_{0}=\Varangle B_{0} C_{0} E_{2}$ (proof of the first one of the chain of equations (3)). The other two we prove analogously.

Lemma 5. If $A B C D E$ is an inscribed pentagon and X - a point in its plane, but not on its circumcircle (Fig. 7). For the initially accepted notations:

$$
\begin{equation*}
\Varangle A_{0} D_{2} B_{0}+\Varangle E_{0} B_{2} D_{0}=\Varangle E_{2} C_{0} B_{0}+180^{\circ} \tag{4}
\end{equation*}
$$

Proof 5. Since $\triangle A_{0} D_{2} B_{0}$ is the pedal triangle of X with respect to $\triangle E C D$, according to Lemma 1 (Fig. 7):

$$
\Varangle A_{0} D_{2} B_{0}=360^{\circ}-\Varangle E X C-\Varangle E D C
$$

From $\triangle A B C$, also by Lemma 1 , it follows the equality:

$$
\Varangle E_{0} B_{2} D_{0}=360^{\circ}-\Varangle A X C-\Varangle A B C
$$

We add the last two equalities and get:

$$
\begin{equation*}
\Varangle A_{0} D_{2} B_{0}+\Varangle E_{0} B_{2} D_{0}=720^{\circ}-\Varangle E X C-\Varangle E D C-\Varangle A X C-\Varangle A B C \tag{5}
\end{equation*}
$$

On the other hand, $\Varangle A D E=\Varangle E D C-\Varangle A D C$ (Fig. 7) and $\Varangle E_{2} C_{0} B_{0}=\Varangle A X E-\Varangle A D E$ (according to Lemma 1). Using both of them, we get consequently:

$$
\Varangle E_{2} C_{0} B_{0}=\Varangle A X E-\Varangle A D E=360^{\circ}-\Varangle A X C-\Varangle E X C-(\Varangle E D C-\Varangle A D C)
$$

i.e.:

$$
\begin{aligned}
& \Varangle E_{2} C_{0} B_{0}=\left(360^{\circ}-\Varangle A X C-\Varangle E X C-\Varangle E D C\right)+\Varangle A D C= \\
& =\left[720^{\circ}-(\Varangle A X C+\Varangle E X C+\Varangle E D C)-360^{\circ}\right]+\left(180^{\circ}-\Varangle A B C\right)
\end{aligned}
$$

hence:

$$
\Varangle E_{2} C_{0} B_{0}=\left(720^{\circ}-\Varangle A X C-\Varangle E X C-\Varangle E D C-\Varangle A B C\right)-180^{\circ}
$$

Substitute the right part of the last equation with the right side of equation (5), we get:

$$
\Varangle E_{2} C_{0} B_{0}=\Varangle A_{0} D_{2} B_{0}+\Varangle E_{0} B_{2} D_{0}-180^{\circ}
$$

From this immediately follows the equality which we are proving.
Lemma 6. Any two inscribed pentagons with equal corresponding angles are similar.
Proof 6. Let $A B C D E$ and $A_{1} B_{l} C_{l} D_{l} E_{l}$ be two inscribed pentagons of equal corresponding angles (Fig. $8^{a, b}$):

FIGURE 8^{a}. Shows Lemma 6.

FIGURE 8^{b}. Shows Lemma 6.

To prove their similarity, let show first that $\triangle A B C \sim \triangle A_{1} B_{1} C_{1}$. It's given that $\Varangle A B C=\Varangle A_{1} B_{1} C_{1}$. Further: $\Varangle E A C=180^{\circ}-\Varangle E D C=180^{\circ}-\Varangle E_{1} D_{1} C_{1}=\Varangle E_{1} A_{1} C_{1} \quad$ i.e. $\quad \Varangle E A C=\Varangle E_{1} A_{1} C_{1}$. Therefore $\Varangle C A B=\Varangle E A B-\Varangle E A C=\Varangle E_{1} A_{1} B_{1}-\Varangle E_{1} A_{1} C_{1}=\Varangle C_{1} A_{1} B_{1}$. We got two equal respective angles in $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1} \Rightarrow$ they are similar. The similarity of the other peripheral triangles of the pentagons may be analogically proven. Hence the pentagons are composed of equally placed similar triangles, so they are similar.

Lemma 7. Let $A B C D E$ be an inscribed pentagon and X - a point in its plane and not on its circumcircle. There exists an inscribed pentagon $\bar{A} \bar{B} \bar{C} \bar{D} \bar{E}$ (Fig. 9), the successive peripheral triangles of which are correspondingly similar to the pedal triangles of X with respect to the consecutive peripheral triangles of $A B C D E$.

Proof 7. We use the notations accepted in the beginning. First we construct the vertices \bar{C}, \bar{D} and \bar{E} of the required pentagon $\bar{A} \bar{B} \bar{C} \bar{D} \bar{E}$ so that they coincide with the points B_{0}, D_{2} and A_{0} (Fig. 9). Let k be the circumcircle of $\Delta \bar{C} \bar{D} \bar{E}$. On k we choose a point \bar{A} so that $\Varangle \bar{A} \bar{D} \bar{E}=\Varangle B_{0} C_{o} E_{2}=\Varangle 1$. Since $\Varangle \bar{E} \bar{A} \bar{D}=\Varangle \bar{E} \bar{C} \bar{D}$ (inscribed angles) and $\Varangle \bar{E} \bar{C} \bar{D}=\Varangle 5=\Varangle E_{2} B_{0} C_{0}$ (according to Lemma 4), then $\Varangle \bar{E} \bar{A} \bar{D}=\Varangle \bar{E} \bar{C} \bar{D}=\Varangle E_{2} B_{0} C_{0}=\Varangle 5$. Hence $\triangle \bar{A} \bar{D} \bar{E}$ and $\triangle E_{2} B_{0} C_{0}$ have two equal angles, and therefore they are similar. Let \bar{B} be a point on the circle k such that $\Varangle \bar{B} \bar{E} \bar{A}=\Varangle A_{2} D_{0} C_{0}=\Varangle 2$. As $\Varangle \bar{E} \bar{B} \bar{A}=\Varangle \bar{E} \bar{D} \bar{A}$ as inscribed angles, and $\Varangle \bar{E} \bar{D} \bar{A}=\Varangle 1=\Varangle D_{0} C_{0} A_{2}$, then $\Varangle \bar{E} \bar{B} \bar{A}=\Varangle D_{0} C_{0} A_{2}$. Hence $\Delta \bar{E} \bar{B} \bar{A}$ and $\triangle D_{0} C_{0} A_{2}$ have two equal angles, i.e. they are similar. To prove the lemma, it remains to prove that $\triangle \bar{A} \bar{B} \bar{C} \sim \triangle E_{0} B_{2} D_{0}$ and $\triangle C B D \sim \triangle E_{0} A_{0} C_{2}$.

As inscribed angles $\Varangle \bar{B} \bar{C} \bar{A}=\Varangle B E A$ and $\Varangle \bar{B} \bar{E} \bar{A}=\Varangle 2=\Varangle A_{2} D_{0} C_{0}$ (from the definition of \bar{B}) $\Rightarrow \Varangle \bar{B} \bar{C} \bar{A}=\Varangle A_{2} D_{0} C_{0}$. But $\Varangle A_{2} D_{0} C_{0}=\Varangle E_{0} D_{0} B_{2}$ (by Lemma 4) $\Rightarrow \Varangle \bar{B} \bar{C} \bar{A}=\Varangle A_{2} D_{0} C_{0}=\Varangle E_{0} D_{0} B_{2}$. To prove that $\triangle \bar{A} \bar{B} \bar{C} \sim \triangle E_{0} B_{2} D_{0}$, we have to prove that $\Varangle \bar{A} \bar{B} \bar{C}=\Varangle E_{0} B_{2} D_{0}$. According to Lemma 5:

$$
\Varangle A_{0} D_{2} B_{0}+\Varangle E_{0} B_{2} D_{0}=\Varangle E_{2} C_{0} B_{0}+180^{\circ}
$$

But $\Varangle A_{0} D_{2} B_{0}=180^{\circ}-\Varangle \bar{E} \bar{B} \bar{C}$ and $\Varangle E_{2} C_{0} B_{0}=\Varangle 1=\Varangle \bar{A} \bar{D} \bar{E}=\Varangle \bar{A} \bar{B} \bar{E}$.

FIGURE 9. Shows Lemma 7 and Theorem 4.

We substitute these equations in the above and get:

$$
\left(180^{\circ}-\Varangle \bar{E} \bar{B} \bar{C}\right)+\Varangle E_{0} B_{2} D_{0}=\Varangle \bar{A} \bar{B} \bar{E}+180^{\circ}
$$

i.e.:

$$
\Varangle \bar{A} \bar{B} \bar{E}+\Varangle \bar{E} \bar{B} \bar{C}=\Varangle E_{0} B_{2} D_{0} .
$$

But $\Varangle \bar{A} \bar{B} \bar{E}+\Varangle \bar{E} \bar{B} \bar{C}=\Varangle \bar{A} \bar{B} \bar{C}$, hence we get the wanted $\Varangle \bar{A} \bar{B} \bar{C}=\Varangle E_{0} B_{2} D_{0} \Rightarrow$ the similarity $\triangle \bar{A} \bar{B} \bar{C} \sim \Delta E_{0} B_{2} D_{0}$ is proven. It remains to prove that $\Delta \bar{C} \bar{B} \bar{D} \sim \Delta E_{0} A_{0} C_{2}$. From the proven $\triangle \bar{A} \bar{B} \bar{C} \sim \Delta E_{0} B_{2} D_{0}$ we have $\Varangle \bar{C} \bar{A} \bar{B}=\Varangle D_{0} E_{0} B_{2}$. But $\Varangle D_{0} E_{0} B_{2}=\Varangle A_{0} E_{0} C_{2}$ (from Lemma 4) $\Rightarrow \Varangle \bar{C} \bar{A} \bar{B}=\Varangle A_{0} E_{0} C_{2}$, so $\Varangle \bar{C} \bar{D} \bar{B}=\Varangle \bar{C} \bar{A} \bar{B}=\Varangle A_{0} E_{0} C_{2}$. Further: $\Varangle \bar{C} \bar{B} \bar{D}=\Varangle \bar{C} \bar{E} \bar{D}=\Varangle 4=\Varangle E_{0} A_{0} C_{2}$. In $\triangle \bar{C} \bar{D} \bar{B}$ and $\triangle A_{0} E_{0} C_{2}$ we got two respectively equal angles \Rightarrow they are similar. This proves the lemma.

We can now formulate and prove the property in question of the peripheral triangles of Simpson's pentagon for an arbitrary point X in the plane of an inscribed pentagon:

Theorem 4. Any peripheral triangle of the Simpson's pentagon $A_{l} B_{l} C_{l} D_{l} E_{l}$ for a point X which lies not on the circumcircle of the inscribed pentagon $A B C D E$, is similar to the pedal \triangle of X with respect to its conjugate Δ, peripheral of $A B C D E$ (in our notation $\triangle A_{1} B_{1} C_{1} \sim \triangle D_{0} B_{2} E_{0}, \triangle B_{1} C_{1} D_{1} \sim \triangle A_{0} C_{2} E_{0}, \Delta C_{1} D_{1} E_{1} \sim \triangle B_{0} D_{2} A_{0}$ (Fig. 7).

Proof: According to Lemma 7 there exists an inscribed pentagon $\bar{A} \bar{B} \bar{C} \bar{D} \bar{E}$, with peripheral triangles $\bar{A} \bar{B} \bar{C}$, $\bar{B} \bar{C} \bar{D}, \bar{C} \bar{D} \bar{E}$, etc. similar to the pedal triangles $D_{0} B_{2} E_{0}, A_{0} C_{2} E_{0}, B_{0} D_{2} A_{0}, \ldots$ of X with respect to the peripheral triangles $A B C, B C D, C D E$, etc. of the given pentagon $A B C D E$ (Fig. 9). Then the corresponding angles of $\triangle \bar{A} \bar{B} \bar{C}$, $\Delta \bar{B} \bar{C} \bar{D}, \Delta \bar{C} \bar{D} \bar{E}$, etc. and those of the pedal $\Delta D_{0} B_{2} E_{0}, \Delta A_{0} C_{2} E_{0}, \Delta B_{0} D_{2} A_{0}$, etc., are equal. Hence:

$$
\Varangle \bar{A} \bar{B} \bar{C}=\Varangle D_{0} B_{2} E_{0}, \Varangle \bar{B} \bar{C} \bar{D}=\Varangle A_{0} C_{2} E_{0}, \Varangle \bar{C} \bar{D} \bar{E}=\Varangle B_{0} D_{2} A_{0} \text {, etc. }
$$

At the same time, for the Simpson's pentagon $A_{l} B_{l} C_{l} D_{l} E_{l}$ for the point X with respect to the pentagon $A B C D E$, according to Lemma 3 , the following equations are satisfied (Fig. 7):

$$
\Varangle A_{1} B_{1} C_{1}=\Varangle D_{0} B_{2} E_{0}, \quad \Varangle B_{1} C_{1} D_{1}=\Varangle A_{0} C_{2} E_{0}, \quad \Varangle C_{1} D_{1} E_{1}=\Varangle B_{0} D_{2} A_{0}, \text { etc. }
$$

It follows from them that:

$$
\Varangle \bar{A} \bar{B} \bar{C}=\Varangle A_{1} B_{1} C_{1}, \quad \Varangle \bar{B} \bar{C} \bar{D}=\Varangle B_{1} C_{1} D_{1}, \quad \Varangle \bar{C} \bar{D} \bar{E}=\Varangle C_{1} D_{1} E_{1}, \text { etc. }
$$

We get that the inscribed pentagons $\bar{A} \bar{B} \bar{C} \bar{D} \bar{E}$ and $A_{l} B_{l} C_{l} D_{l} E_{l}$ have correspondingly equal angles, therefore they are similar (according to Lemma 6). Then their corresponding peripheral triangles are similar, i.e.:

$$
\Delta \bar{A} \bar{B} \bar{C} \sim \Delta A_{1} B_{1} C_{1}, \quad \Delta \bar{B} \bar{C} \bar{D} \sim \Delta B_{1} C_{1} D_{1}, \quad \Delta \bar{C} \bar{D} \bar{E} \sim \Delta C_{1} D_{1} E_{1}, \text { etc. }
$$

But the peripheral triangles $\bar{A} \bar{B} \bar{C}, \bar{B} \bar{C} \bar{D}, \bar{C} \bar{D} \bar{E}$, etc. of the pentagon $\bar{A} \bar{B} \bar{C} \bar{D} \bar{E}$ are similar to the pedal triangles $D_{0} B_{2} E_{0}, A_{0} C_{2} E_{0}, B_{0} D_{2} A_{0}$ etc. of the point X with respect to the successive peripheral triangles of the pentagon $A B C D E$ (according to Lemma 7), i.e.:

$$
\Delta \bar{A} \bar{B} \bar{C} \sim \Delta D_{0} B_{2} E_{0}, \quad \Delta \bar{B} \bar{C} \bar{D} \sim \Delta A_{0} C_{2} E_{0}, \quad \Delta \bar{C} \bar{D} \bar{E} \sim \Delta B_{0} D_{2} A_{0}, \text { etc. }
$$

Then the similar (according to what we have just proved) peripheral triangles $A_{1} B_{1} C_{1}, B_{1} C_{1} D, C_{1} D_{1} E_{1}$ etc. of the Simpson's pentagon $A_{l} B_{l} C_{l} D_{l} E_{l}$ for the point X with respect to $A B C D E$ will be similar to the pedal triangles $D_{0} B_{2} E_{0}, A_{0} C_{2} E_{0}, B_{0} D_{2} A_{0}$ etc. of the point X with respect to the successive peripheral triangles of the pentagon $A B C D E$, i.e. these similarities will hold:

$$
\Delta A_{1} B_{1} C_{1} \sim \Delta D_{0} B_{2} E_{0}, \quad \Delta B_{1} C_{1} D_{1} \sim \Delta A_{0} C_{2} E_{0}, \quad \Delta C_{1} D_{1} E_{1} \sim \Delta B_{0} D_{2} A_{0}, \text { etc. }
$$

This proves Theorem 4. We can now prove Theorem 3 (see it on p. 1 and Fig. 3).
Proof of Theorem 3: The Simpson's circle k_{B} for the point X with respect to the pentagon $C D E F A$, passes through the pedal images F_{B}, A_{B} и C_{B} of the point X with respect to its peripheral quadrilaterals $A C D E, C D E F$, and $D E F A$ (as defined by Simpson's circle) (Fig. 10). Similarly, Simpson's circle k_{F} for the point X with respect to the pentagon $A B C D E$ passes through the pedal images A_{F}, B_{F} и C_{F} of X with respect to its peripheral quadrilaterals $B C D E, C D E A$, and $D E A B$. We get that both the points B_{F} and F_{B} are pedal images of X with respect to the quadrilateral $A C D E$, therefore $B_{F}=F_{B}$. Simpson's circle k_{C} for the point X, with respect to the pentagon $D E F A B$, passes through the pedal images F_{C}, A_{C} and B_{C} of X with respect to its peripheral quadrilaterals $A B D E, B D E F$ and $D E F A$. We obtain that both the points F_{C} and C_{F} are pedal images of X with respect to the quadrilateral $A B D E$ and that the points B_{C} and C_{B} are pedal images of X with respect to the quadrilateral $D E F A$. Therefore:

$$
F_{C}=C_{F} \text { and } B_{C}=C_{B} .
$$

Let $A_{0}, B_{0}, F_{0}, A_{2}, B_{2}$ and B_{3} be the orthogonal projections of X on the lines $A B, B C, A F, B F, A C$ and $F C$ respectively. $C_{B} A_{B} F_{B}$ is the peripheral triangle of the Simpson's pentagon for X with respect to the pentagon $A C D E F$, and $F_{0} B_{3} B_{2}$ is the pedal triangle of X with respect to the conjugate peripheral triangle $C A F$ of $A C D E F$. Then (according to Theorem 4) $\Delta C_{B} A_{B} F_{B} \sim \Delta F_{0} B_{3} B_{2}$ and then $<C_{B} A_{B} F_{B}=<F_{0} B_{3} B_{2}$. On the other hand, for the pedal $\Delta F_{0} B_{3} B_{2}$ of X with respect to $\triangle C A F$ by Lemma 1 angles: $<F_{0} B_{3} B_{2}=<F X C-<F A C$. Therefore:

$$
\begin{equation*}
\Varangle C_{B} A_{B} F_{B}=\Varangle F_{0} B_{3} B_{2}=\Varangle F X C-\Varangle F A C \tag{6}
\end{equation*}
$$

Analogically:

$$
\begin{equation*}
\Varangle C_{F} A_{F} B_{F}=\Varangle A_{0} B_{0} B_{2}=\Varangle B X C-\Varangle B A C \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Varangle F_{C} A_{C} B_{C}=\Varangle A_{0} A_{2} F_{0}=360^{\circ}-\Varangle B X F-\Varangle B A F \tag{8}
\end{equation*}
$$

FIGURE 10. Shows Theorem 3.

Now let Y be the second common point of the Simpson's circles k_{B} and k_{F}. Let prove that Y lies on k_{C}. Let P be an arbitrary point on the continuation of the segment $F_{B} Y$. From the inscribed in k_{F} quadrilateral $Y B_{F} A_{F} C_{F} \Rightarrow \Varangle F_{C} Y P=\Varangle C_{F} A_{F} B_{F}$, and from the inscribed $Y F_{B} A_{B} C_{B}$ in $k_{B} \Rightarrow \Varangle B_{C} Y P=\Varangle C_{B} A_{B} F_{B}$.

Hence, using also the equations (6) - (8), we obtain:

$$
\begin{aligned}
& \Varangle F_{C} Y B_{C}=\Varangle F_{C} Y P+\Varangle B_{C} Y P=\Varangle C_{F} A_{F} B_{F}+\Varangle C_{B} A_{B} F_{B}= \\
& =(\Varangle B X C-\Varangle B A C)+(\Varangle F X C-\Varangle F A C)=(\Varangle B X C+\Varangle F X C)-(\Varangle B A C+\Varangle F A C)= \\
& =\left(360^{\circ}-\Varangle B X F\right)-\Varangle B A F=\Varangle F_{C} A_{C} B_{C},
\end{aligned}
$$

i.e.:

$$
\Varangle F_{C} Y B_{C}=\Varangle F_{C} A_{C} B_{C} .
$$

Hence the points F_{C}, Y, A_{C}, B_{C} are concyclic, i.e. Y lies on the circle defined by F_{C}, A_{C}, B_{C}, but that's the Simpson's circle k_{C}. Therefore the Simpson's circles k_{C}, k_{B} and k_{F} have a common point Y. Analogously, the circles k_{A}, k_{F} and k_{C} have a common point. Since it is a common point of k_{F} and k_{C}, it coincides with Y. Therefore $Y \in k_{A} \cap k_{F} \cap k_{C} \cap k_{B}$. In the same way k_{A}, k_{F} and k_{D} have a common point. Since it is a common point of k_{A} and k_{F}, it coincides with Y. Therefore $Y \in k_{A} \cap k_{F} \cap k_{C} \cap k_{B} \cap k_{D}$. Finally, we similarly obtain that the circles k_{C}, k_{B} and k_{E} have a common point. Since it is a common point of k_{C} and k_{B}, it is Y. Therefore $Y \in k_{A} \cap k_{F} \cap k_{C} \cap k_{B} \cap k_{D} \cap k_{E}$, i.e. all six Simpson's circles have a common point.

Definition 3. Let X be a point on the plane of the inscribed hexagon $A B C D E F$, not on its circumcircle. The common point Y of Simpson's circles for X with respect to the peripheral pentagons of $A B C D E F$ we call the pedal image of X with respect to $A B C D E F$ (Fig. 3).

ACKNOWLEDGEMENTS

The authors would like to thank the Research and Development Sector at the Technical University of Sofia for the financial support.

REFERENCES

1. V. N. Nenkov, St. T. Stefanov and H. M. Haimov. Configurations of pedal circles of an arbitrary point in the plane of a polygon (Mathematics and Informatics, Sofia, Issue № 3-2020) pp. 313-323, ISSN 1310-2230 [in Bulgarian].
2. V. N. Nenkov, J. N. Ivanov, St. T. Stefanov and H. M. Haimov, Relations between three transformations in the plane of an arbitrary quadrilateral, Proceedings of the Scientific Conference with International Participation MATTECH, October 22-24, 2020, pp. 49-56, Shumen University "Bishop Konstantin Preslavski" - FMI - FTN, Shumen, ISSN 1314-3921 [in Bulgarian].
3. H. M. Haimov, A statement about the concurrence of pedal circles of a point in the plane of a quadrilateral (Mathematics and Informatics, Sofia, Issue № 1 for 2019) pp. 76-89, ISSN 1310-2230 [In Bulgarian].
4. V. N. Nenkov, St. T. Stefanov and H. M. Haimov, Geometry of quadrilateral, Miquel point, Inverse isogonality (Mathematics and Informatics, Sofia, Issue № 1 for 2017), pp. 81-93 [in Bulgarian].
5. S. Iv. Grozdev, For High Achievements in Mathematics: The Bulgarian Experience (Theory and Practice). (ADE, Sofia, 2007) (ISBN 978-954-92139-1-1).
6. S. Iv. Grozdev and V. N. Nenkov. Fans of circles in inscribed polygons (Mathematics and Informatics, Sofia, Issue № 2 for 2017) pp. 181-201 [in Bulgarian].
7. V. N. Nenkov, Mathematical competence increase through dynamic geometry (Archimedes 2000, Sofia, 2020) ISBN 978-954-779-291-3 [in Bulgarian].
8. T. F. Sergeeva, M. V. Shabanova and S. Iv. Grozdev, Foundation of dynamic geometry (ASOU, Moscow, 2014) ISBN: 978-5-91543-140-8 [in Russian].
9. N. Hr. Pavlova, Dr. V. Marchev and Kr. V. Harizanov, The GEOTHNK project (Proceedings of the Scientific Conference MATTEX 2014 of Shumen's University "Episkop Konstantin Preslavsky", Shumen, Vol. 1, 2014), pp. 245-249 [in Bulgarian]: https://docplayer.bg/151451133-geothnk-pr.html (accessed 03.07.2022).
10. N. Hr. Pavlova, Didactic Game "Possible Cross Sections" (Mathematics and Informatics, Sofia, Issue № 4 for 2020), pp. 391-397 - URL: https://www.ceeol.com/search/article-detail?id=894166\&fbclid=IwAR0J-otJpLKi5DmPS_A0NG8_6500n7YCdg-QbO3smUSeHNXkPhB7W6jPObw (Last accessed on 03.07.2022).
11. N. Hr. Pavlova, Ideas for geometrical modelling when solving combinatorial problems (Mathematics and Informatics, Sofia, Issue № 2 for 2019), pp. 194-202 [in Bulgarian] - URL: https://www.ceeol.com/search/article-detail?id=760970 (Last accessed on 03.07.2022).
12. R. N. Nikolaev, T. V. Milkova and K. Chalakova. Combinatorial problems related to a triangle (Mathematics and Informatics, Sofia, Issue № 5 for 2018), pp. 506-517 [In Bulgarian].
