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Abstract—The paper considers the problem of gramians 

computation for linear hyperbolic distributed parameter 

systems.  A special case of such systems is the vibrating string, 

which is described by wave partial differential equation. The 

weak solution of this equation is derived by applying the 

approach of time-space separation and using the Fourier 

method. This solution is transformed into a standard state space 

formulation by means of certain infinite dimensional matrices. 

The proposed system description is compared to a description 

based on a strongly continuous semigroup generated by a 

bounded system operator. Similarly to the finite dimensional 

case, it is shown that the derived weak solution consists of two 

parts. The zero input part is due to the initial conditions and 

participates in obtaining the observability gramian of the 

system. The zero state part is a consequence of the input signal 

effect and is used to compute the controllability gramian. The 

advantages of the presented approach for computing the 

gramians with respect to the standard semigroup approach is 

discussed.   

Keywords — distributed parameter system, hyperbolic partial 

differential equation, time-space separation, method of Fourier, 

vibrating string, controllability and observability gramians 

I. INTRODUCTION  

In many physical processes liable to control, the actual 
variables are functions of both time and position. The time 
dependence of these variables determines the dynamical 
nature of the physical process, and the position dependence 
determines the distributed character of the variables 
describing the physical phenomenon. From system theoretic 
point of view, such physical processes define the distributed 
parameter systems. Such systems are described by partial 
differential equations and their solution belongs to an infinite 
dimensional Hilbert space. The term distributed parameter is 
based on the fact that the corresponding solution reflects the 
distribution in space of the physical quantities. A specific 
feature of such systems is that they may lead to the existence 
of not rational transfer functions [1]. While finite dimensional 
systems, containing lumped parameters, are modeled by 
ordinary differential equations and rational transfer functions, 
the distributed parameter systems are modeled by partial 
differential equations and irrational transfer functions. A 
specific feature of these systems is the existence of infinite 
dimensional state space. The infinite dimensional nature of the 
state space is due to the fact that a distributed parameter 
system evolves over a continuum, where the state vector can 
be considered as a member of an infinite dimensional function 
space. Typical examples of distributed parameter systems are 
thermal, pneumatic, pressure and hydraulic systems, as well 
as systems describing chemical and biological processes, 
flexible mechanical structures, material microstructures and 
many others [2]. The wide spread of practical applications of 

such systems determines the need of their detailed and 
thorough study.  

 Hyperbolic partial differential equations find their 
application in modeling wave phenomena in physics. The 
propagation of waves in physics is related to the 
electromagnetic field distribution, acoustic and elastic waves 
dispense in different environments, the cases of standing 
waves of vibrating strings or membranes, flexible beams, 
resonating cavities and many others. A model reduction 
procedure for rapid and reliable solution of hyperbolic partial 
differential equations is proposed in [3]. The authors utilize a 
time-space data compression procedure for data processing, 
then apply a Petrov-Galerkin projection for computation of 
mapped solutions and finally speed up the process by online 
computation. A major approach for modeling distributed 
parameter systems is by using time-space separation. In [2],   
the authors give a presentation of the basic methods, which 
use time-space separation for developing the distributed 
parameter system models. The authors discuss partial 
differential equations models obtained from first principle 
knowledge, as well as the application of system identification 
methods for deriving distributed parameters descriptions. The 
main approach for solving the presented problems is the 
Fourier method for obtaining time and spatial function 
representations. A finite difference spatial discretization for 
preserving the geometrical structure of the underlying 
physical phenomena is proposed in [4]. The explored 
processes is 2-D wave and heat equations described in 
cylindrical coordinate system. The discretization structure is 
important part of the distributed parameter system modeling 
and control, since it presumes the application of appropriate 
numerical methods. A tutorial on frequency domain 
descriptions for distributed parameter systems is given in [1]. 
The authors present different transfer function models for the 
basic physical processes described by partial differential 
equations for different boundary conditions. Similar work, for 
different distributed parameter systems representations, both 
in time and frequency domain and for different initial and 
boundary conditions, is presented in [5]. Especially useful 
information regarding the input/output relation in time domain 
and directly related to the controllability system properties, are 
the Green functions for the underlying processes. The 
balanced truncation method for model order reduction of the 
semi discretized Stokes equation is presented in [6]. The 
relationship between input/output and internal stability and the 
concepts of stabilizability/detectability are extended from the 
finite dimensional to the infinite dimensional case in [7]. The 
generalization of the finite dimensional theory is made 
possible by assuming that the evolution of the state is 
governed by strongly continuous semigroup of bounded linear 
operators, where the state space is a Hilbert space, while the 
input and output spaces can be finite dimensional. The authors 
have proven that the stabilizability/detectability condition is 



necessary and sufficient for the existence of internally 
stabilizable output feedback compensation. Gramians 
computation for parabolic distributed parameter systems is 
presented in [8]. The solution of the partial differential 
equation is derived by applying the approach of time-space 
separation and by using the spectral method. The gramians are 
obtained as generalizations to the finite dimensional case, and 
are based on the solution decomposition of the linear parabolic 
partial differential equation.   

The paper considers the problem of gramians computation 
for a linear hyperbolic distributed parameter system. The 
gramians are important energy characteristics of a given 
system, with the controllability gramian determining the 
system energy distribution at the input, and the observability 
gramian reflecting the energy at the system output. Gramians 
find application in system modeling through the method of 
balanced truncation model reduction. They can be used for  
controllability and observability analysis of a given system. 
Finally, gramians have important role in control system 
synthesis, by obtaining a control law of minimum energy.  

We provide a new approach for computing the gramians, 
which is based on the solution of the hyperbolic partial 
differential equation. The main approach in the control 
literature for gramians derivation is also considered. This 
approach relies on infinite dimensional state space 
formulation of the partial differential equation problem and 
uses the properties of a ��-semigroup generated by certain 
linear operator containing the derivative operator as its 
element. Our approach uses the weak solution of the 
hyperbolic partial differential equation, obtained by applying 
the principle of time-space separation. The spatial basis 
functions are determined by utilizing the Fourier method for 
the derived solution. By analogy to the finite dimensional 
case, the controllability and observability gramians of the 
distributed parameter system are obtained from the solution 
division into zero-input and zero-state parts. It is shown that 
the obtained gramians obey the semigroup properties of the 
partial differential equation operator. We examine the wave 
equation representing vibrating string, acoustic waves and 
flexible beam vibration and illustrate how the presented 
method for gramians computation can be applied for the 
vibrating string system.   

II. MATHEMATICAL PRELIMINARIES ON 

HYPERBOLIC DISTRIBUTED PARAMETER SYSTEMS 

We consider the general form of a second order partial 
differential equation with two independent variables: 

 ���� + ���� + 	��� + 
�� + ��� + �� = �,    (1) 

where � = ���, ��  is the physical variable under 
consideration and � = ���, �� is the external force applied to 
the process. The partial differential equation reflects the 
distribution of a physical quantity and this is the reason to call 
the corresponding system a distributed parameter system. The 
equation (1) is homogeneous if the condition on the right hand 
side  ���, �� ≡ 0 is satisfied. If the discriminant �� − 4�	 >0, the equation (1) is of hyperbolic type. A main representative 
of the hyperbolic differential equation is the wave equation of 
a vibrating string. The one-dimensional nonhomogeneous 
wave equation can be written in the form: 

 
�����,����� = �� �����,����� + ���, ��,  0 < � <  , � ≥ 0,    (2) 

���, �� is the deflection from the equilibrium state at time � in  

the position �  along the string. The constant � = "#  is the 

string constant, where $ is the string tension and % is the linear 
mass density of the string. Equation (2) models different wave 
phenomena like acoustic plane waves, lateral vibrations in 
beams and others [9]. For the vibrating string, the boundary 
conditions are set to zero, i.e.: 

  ��0, �� = 0     and      �� , �� = 0       (3) 

The initial conditions are set to the following functions: 

  ���, 0� = &���   and    
���� ��, 0� = '���     (4) 

Such kind of problem is called the problem of Cauchy. We 
assume that the external force applied to the string is given in 
the form ���, �� = ����(���,  where � ∈  ��0,  �  describes 
both the control and observation action, and after 
normalizations are introduced, the nonhomogeneous wave 
equation takes the form [1]: 

           
�����,����� = �����,����� + ����(���   (5) 

with boundary conditions ��0, �� = 0  and �� , �� = 0 . 
Assuming velocity measurement at the output, we obtain: 

       *��� = + ����,���� ����
�,�   (6) 

If instead of velocity measurement (6), we measure position, 
the output equation takes the form: 

               *��� = + ���, ������
�,�   (7) 

The transfer function can be calculated by taking Laplace 
transforms on equations (5) and (6) and considering zero 
initial conditions, i.e. &��� = '��� = 0 . The resulting 
boundary value problem can be written in the form [1]: 

  
-�.��,/�-�� = 0�1��, 0� − ����Υ�0�,  (8) 

where 1��, 0� and Υ�0� are the Laplace transforms of ���, �� 
and (���  correspondingly, with boundary conditions: 1�0, 0� = 0  and 1� , 0� = 0 .Thus, equation (5) can be 
transformed into the form: 

  
--� 3 1-.-�4 = 5 0 10� 07 3 1-.-�4 − 5017 ����Υ�0� (9) 

The matrix exponential of matrix 8 = 5 0 10� 07 with respect to 

the spatial variable � is given by the expression: 

              �9� = 3cosh�0�� >/ sinh�0��0 sinh 0� cosh�0�� 4              (10) 

After selecting the function: 

   ���� = A1, 0 ≤ � ≤  2⁄0,  2 < � ≤  ⁄ , 

the transfer function of the vibrating string distributed 
parameter system is obtained as follows [1]: 

  E�0� = >�/ + � FGHIJK�LMFGHI�JK�LMFGHI�/�/� HNOI�/�            (11) 

The transfer function model is an input/output model in the 
frequency domain. We consider now the input/output model 
in time domain that is presented by the Green function. The 
Green function is a generalization of the impulse response for 



distributed parameter systems. We assume that, the hyperbolic 
differential equation under consideration is given as follows: 

         
�����,����� = �� �����,����� + ���, ��  (12) 

with initial conditions ���, 0� = &��� and 
���� ��, 0� = '���. 

Assume the spatial interval as 0 ≤ � ≤   and � ≥ 0 .The 
Green function for (12) is given as follows [5]: 

 E��, P; �� = �RS ∑ sin UR, � sin UR, P sin SUR, �VUW>   (13) 

If the domain of the spatial variable is changed, then for � ≥0 and � ≥ 0, the Green function is obtained as [5]: E��, P; �� = >��MXYS��M>��MXMS��M>��YXYS��Y>��YXMS���S    (14) 

Finally, for an infinite length of the string, the Green function 
is obtained as [5]: 

  E��, P; �� = >�S 1��� − |� − P|�   (15) 

III. HYPERBOLIC GRAMIANS DERIVATION 

The goal is to develop the concept of system gramians for 
distributed parameter systems with infinite dimensional state 
space, where the state evolves over a continuum and therefore, 
can be regarded as an element of infinite dimensional function 
space. The state equation for such systems can be written in 
the form [10]: 

   
--� [ \-]-�^ = 8 [ \-]-�^ + _(���,     (16) 

where \��� ∈ ℋ, ℋ is the infinite dimensional Hilbert space,  8 is not a matrix, but an operator acting on ℋ, i.e. 8: ℋ → ℋ  
and _: Υ → ℋ, where Υ is the input space, which can be finite 
dimensional. For the vibrating string system, where the wave 
equation is given by the expression (5), the state equation can 
be written in the form (16), where the system operators are 
defined as follows: 

  8 = 3 0 1����� �∙� 04,      _ = [ 0����^  (17) 

If we consider the distributed parameter system of a damped 
vibrating string, then the wave equation becomes a type of a 
telegraph equation, which is described as [1]: 

 
�����,����� + d e���∙,���� f�g ���� = �����,����� + ����(���   (18) 

where d  is a small constant and under the same boundary 
conditions as in (5), then the system operators take the form: 

 8 = 3 0 1����� �∙� −d⟨�∙�|�⟩����4,  _ = [ 0����^           (19) 

and since \��� = ���∙,���� , the equation becomes nonlinear. The 

output equation, assuming velocity measurements at the 
output, takes the form: 

                     *��� = � [ \-]-�^,                 (20) 

where � =  j0 ⟨∙ |��∙�⟩k, where the integration in the inner 
product is performed in spatial domain with interval of 
integration j0,  k.  

If we consider a simply supported flexible beam, the 
differential equation describing the beam deflection, is as 
follows [1]: 

 
�����,����� + �l���,����l = ����(���,  0 < � <  ,  � ≥ 0      (21) 

The boundary conditions for the flexible beam are determined 
as follows: 

  ��0, �� = 0, �� , �� = 0, ����0, �� = 0, ���� , �� = 0 (22) 

The state equation for the flexible beam takes the form given 
in (16) with system operators, defined as follows: 

          8 = 3 0 1�l��l �∙� 04    and    _ = [ 0����^      (23) 

The key concept for obtaining the solution of the infinite 
dimensional state equation, that generalizes the concept of 
state transition matrix, is the concept of a strongly continuous �� – semigroup. 

 Definition 1. (Strongly continuous semigroup) [10]:  

A strongly continuous (��M) - semigroup m��� on the Hilbert 
space ℋ is a family m��� ∈ ℒ�ℋ, ℋ� such that: o� m�0� = p; oo� m���m�0� = m�� + 0�; ooo� lim�→� m���\ = \, ∀\ ∈ ℋ.  

Definition 2. (Infinitesimal generator) [10]: 

The infinitesimal generator 8 of a ��M - semigroup on ℋ is 
defined by the expression: 

   8\ = lim�→� >� jm���\ − \k 
with domain t�8� , that is the set of elements \ ∈ ℋ  for 
which the limit exists.  

The matrix exponential �9� is the special case of a semigroup, 
defined on a finite dimensional space. Similarly to the finite 
dimensional case, the following relation is satisfied in the 
infinite dimensional case: 

   
--� m���\� = m���8\�  (24) 

The homogeneous differential equation on the Hilbert space ℋ can be written in the form: 

   
-]���-� = 8\���,   (25) 

Therefore, the partial differential equation represented into a 
state space form, has the following solution: 

       \��� = m���\�   (26) 

In the nonhomogeneous case, the solution of equation (16) is 
obtained as follows: 

  \��� = m���\� + + m�� − $�_(�$�
$��        (27) 

Then, the output signal is obtained as follows: 

  *��� = �m���\� + � + m�� − $�_(�$�
$��       (28) 

By analogy to the finite dimensional case, we can define the 
controllability and observability maps, by using the state and 
output solutions from equations (27) and (28). The 
controllability map of the distributed parameter system over 
the interval j0, uk  is the bounded linear map v: ℋ�j0, uk, Υ� → ℋ defined by the relation [11]: 



               v( = + m�u − 0�w� _(�0�
0  (29) 

The system is exactly controllable on j0, uk if all points in ℋ 
can be reached from the origin at time u, i.e. x�y���v� = ℋ 
. The system is approximately controllable on j0, uk if given a 
small z , the origin can be steered to any state within a z -
neighborhood around it. In this case the reached states form a 

dense subspace within ℋ, or in other words,  x�y���v�{{{{{{{{{{{{{ = ℋ 
[11]. Further, the controllability gramian of the distributed 
parameter system is defined as: 

   |}�0, u� = v ∗ v∗  (30) 

where v∗ is the adjoint of v and is defined as: 

  �v∗\��$� = _∗m∗�u − $�\   (31) 

Finally, |} is an element of ℒ�ℋ� and is defined as [11]: 

 |}�0, u�\ = + m�$�__∗m∗�$�\
$w� ,   \ ∈ ℋ (32) 

In [11] is shown that, for the vibrating string distributed 
parameter system, the condition for exact controllability on 
the interval j0, uk is satisfied, if and only if, there exists a 

constant � > 0, such that + ‖_∗m∗�$�\‖�
$ ≥ �‖\‖�w� . 

The observability map of the distributed parameter system on 
the interval j0, uk  is the bounded linear map �: ℋ →ℋ�j0, uk; �� defined by: 

   �\ = �m�∙�\   (33) 

The system is exactly observable on j0, uk if the initial state 
can be uniquely and continuously constructed from the 
knowledge of the output in ℋ�j0, uk; ��, i.e. � is injective 
and its inverse is bounded on the range of � [11]. The system 
is approximately observable on  j0, uk, if knowledge of the 
output in ℋ�j0, uk; �� determines the initial state uniquely, 
i.e. ��x��� = �0�. The observability gramian on the interval j0, uk is defined as: 

   |��0, u� = �∗�   (34) 

Conditions for exact observability and approximate 
observability are discussed in [11]. The observability gramian |� is an element of ℒ�ℋ� and can be written in the form: 

  |��0, u�\ = + m∗�$��∗�m�$�\
$w�   (35) 

 Similarly to the controllability concept, it is shown in [11] 
that, for the vibrating string distributed parameter system, the 
condition for exact observability on the interval j0, uk  is 
satisfied, if and only if, there exists a constant � > 0, such that + ‖�m�$�\‖�
$ ≥ �‖\‖�w�  for any \ ∈ ℋ.  

IV. GRAMIANS COMPUTATION FOR THE  

HYPERBOLIC DISTRIBUTED PARAMETER SYSTEMS 

Equations (30) and (34) define the controllability and 
observability gramians for distributed parameter systems in 
operator form. Both gramians are obtained by using the 
concept of strongly continuous semigroup, generated by 
bounded operators containing spatial differentiation in their 
structure. This approach however, creates some difficulties 
concerned with computing the gramians. This is the reason to 
use the unifying framework of time-space separation of the 
partial differential equation solution. The principle of time-
space separation is based on the possibility of Fourier series 
approximation of every continuous function describing the 

physical reality. Based on this principle, every time-space 
function can be expanded as the sum of products between time 
and space functions: 

  ���, �� = ∑ ����������V�W>    (36) 

We consider the vibrating string wave equation with presence 
of an external force: 

 
�����,����� − �� �����,����� = ���, ��,   0 < � <  ,  � ≥ 0  (37) 

The boundary conditions are given as ��0, �� = 0  and �� , �� = 0 . The initial conditions are ���, 0� = &���  and ���� ��, 0� = '���. The goal is to obtain the weak solution for 

the hyperbolic partial differential equation. Let us consider the 
function of time ���� from class � [12], where: 

  � = ��j0, ∞�; ℋ�⋂��>��j0, ∞�; ℋ� (38) 

Then, accepting the operator form  ∆� = �� �����,����� , we can 

write: 

     e-�����-�� f����g − ⟨Δ����|����⟩ = ⟨����|����⟩ (39) 

We select a time moment u, such that ��u� = 0 and say that 
the function ���� is a weak solution of the vibrating string 
wave equation, if � ∈ �  and ��0� = & , where ����  is an 
arbitrary function from the class �.  

Therefore, the weak solution ���, �� = ����  of the mixed 
problem for the vibrating string wave equation belongs to the 
class � and satisfies the equality [12]: 

− + e-����-� f -����-� g 
� + + ⟨∆����|����⟩
� − ⟨'|��0�⟩ =w�w�                                                            + ⟨����|����⟩
�w�   (40) 

under the initial condition ��0� = &. Further, we assume that ���� = ���, �� is a function of class ��j0, ∞�; ℋ� and that, 
the solution of the equation (37) exists. For every � ≥ 0, the 
weak solution is a member of the Hilbert space ℋ�0,  � and 
therefore, can be expanded into a series with respect to every 
complete set of orthonormal basis functions in the same 
Hilbert space. This system of basis functions can be selected 
to be the system eigenfunctions ��, y = 1,2, ⋯ of the Laplace 

operator ∆� = �� �����,����� . We rewrite equation (36) in the 

form ���� = ∑ �������V�W> , where  ����� = ⟨����|��⟩ . 
Thus, the series can be written in the form: 

          ���� = ∑ ���V�W> ����� �����,  (41) 

where �� , y = 1,2, ⋯  are the eigenvalues of the Laplace 

operator, i.e. ⟨Δ����|��⟩ = ������� . The functions 
����� 

determine a complete orthonormal set of basis functions on ℋ�0,  � and (40) gives a series representation of the weak 
solution ����. If in (40) we use ���� = �u − ����, we obtain 
the equation [12]: 

 + ��� ���
� − u⟨'|��⟩ + �� + �u − �������
� =w�w�                                                              + �u − �������
�w�    (42) 

where ����� = ⟨����|��⟩ . After differentiation (42) with 
respect to u and making a substitution of the time variables, 
we obtain the equation: 



 ��� ��� − ⟨'|��⟩ + �� + ���$�
$ = + ���$�
$����      (43) 

After differentiating with respect to �, we obtain the following 
differential equation [12]: 

   
-������-�� + ������� = �����  (44) 

with initial conditions ���0� = ⟨&|��⟩ and ��� �0� = ⟨'|��⟩.  
The solution of equation (44) with the corresponding initial 
conditions is given as follows [12]: 

����� = ⟨&|��⟩ cos ���� + �'������� sin ���� +                                >��� + sin ����� − $����$�
$��          (45) 

Therefore, the weak solution of the vibrating string wave 
equation takes the form: 

���, �� = ∑ [⟨&|��⟩ cos ���� + �'������� sin ���� +V�W>                            >��� + sin ����� − $����$�
$�� ^ �����    (46) 

Since the equation is linear, its weak solution (46) has two 
parts: 

 o� the part that is due to the initial conditions and is the weak 
solution of the homogeneous equation: 

  
�����,����� − �� �����,����� = 0,   �|�W� = &,  

-�-�f�W� = ' 

oo� the part that is due to the external input and is the weak 
solution of the nonhomogeneous equation under zero initial 
conditions: 

 
�����,����� − �� �����,����� = ���, ��,  �|�W� = 0, 

-�-� f�W� = 0  

The solutions of these two equations are obtained as follows: 

���, �� = ∑ [⟨&|��⟩ cos ���� +V�W>                                      �'������� sin ����^ �����         (47.1) 

     ���, �� = ∑ ��������V�W> + sin ����� − $����$�
$��     (47.2) 

Therefore, the solution ���, �� = ���, �� + ���, ��  consists 
of two parts, weak solutions of the above two differential 
equations (47.1) and (47.2). 

The eigenvalues of the Laplace operator ∆� = �� �����,�����  are 

obtained as [8]: 

            �� = J�RS, L�
, y = 1,2, ⋯  (48) 

The corresponding eigenfunctions are �� = sin �R, � , y =1,2, ⋯, thus forming the orthonormal set of basis functions ����� = ,�RS sin �R, �.  

The initial conditions are computed as follows: 

                ⟨&|��⟩ = �, + &�P� sin �RX, 
P,� . 

         ⟨'|��⟩ = �, + '�P� sin �RX, 
P,� . 

The existence of two initial conditions, as well as the form of 
equation (16) determines the order of this system to be two. 

Therefore, the ��-semigroup of the vibrating string system is 
also of order two. We create a two by two block matrix  

Λ���� = � cos �RS, � sin �RS, �− sin �RS, � cos �RS, � , a two by one vector Ζ� =
�⟨&|��⟩�'�������

   and a two by one vector Φ� = £sin �R, � 0¤w , 
where ��� = �RS, .   

The expression inside the sum in (47.1) can be written as Φ�w ∙Λ���� ∙ Ζ�. Further, we make the following construction by 
changing the index y = 1,2, ⋯  as follows: Λ��� =
o���Λ������W>V , Ζ = jΖ>w Ζ�w ⋯ Ζ�w ⋯kw ,  Φ =jΦ>w ⋯ Φ�w ⋯kw . Thus, ���, ��  from (47.1) can be 
obtained as: 

   ���, �� = Φw ∙ Λ��� ∙ Ζ  (49) 

We consider now equation (47.2). The input signal ����� is 
calculated as follows: 

  ����� = ⟨����|��⟩ = �, + ��P, �� sin �RX, 
P,� .       

Next, we consider, that the input function is time-space 
separated as in (5) and can be expressed as ���, �� =����(���. So, we can write: 

 �� = ⟨����|��⟩ = �, + ��P� sin �RX, 
P,�   (50) 

Similarly to the zero-input weak solution, we create a two by 

two block matrix Λ���� = � cos �RS, � sin �RS, �− sin �RS, � cos �RS, � ,  a two by 

one vector  _� = 3 0¥����4 , ��� = �RS,   and the two by one 

vector Φ�  is defined as above, i.e. Φ� = £sin �R, � 0¤w
. 

Then, the expression inside the sum in (47.2) can be expressed 
as follows: 

  Ξ� = Φ�w ∙ + Λ��� − $� ∙ _�(�$�
$��   (51) 

Finally, ���, �� from (47.2) can be obtained as follows: 

        ���, �� = Φw ∙ + Λ�� − $��� ∙ Β ∙ υ�$�
$, (52) 

where Β = j_>w ⋯ _�w ⋯kw , Λ = 
o���Λ���W>V  and Φ is 
defined as above.  

For computation of the vibrating string distributed parameter 
system gramians, we apply the same approach as in [8]. This 
approach is based on the wave equation weak solutions (47.1) 
and (47.2). It implements in practice the operator equations 
(30) and (34) and gives direct realization of the expressions 
(32) and (35). In this sense, using expression (52) for the 
natural realization of expression (30), we obtain the 
controllability gramian for the vibrating string distributed 
parameter system on the interval j0, uk as: 

            |}�0, u� = Φw ∙ + Λ���__wΛw���
� ∙ Φw� . (52) 

Similarly, the observability gramian is computed by practical 
implementation of the operator equation (34). The 
observability gramian for the vibrating string distributed 
parameter system, computed on the interval j0, uk takes the 
following form: 



  |��0, u� = Φw ∙ + Λw���Λ���
� ∙w� Φ. (53) 

Remark 1. The so obtained gramians (52) and (53) are 
computed only for one spatial coordinate, namely �. In the 
case when the spatial coordinates are not fixed, but instead are  
changing on a whole interval j0,  k, we partition the interval 

into ©  spatial points, with �U = J� − >�L ª , ª = >« , � =1,2, ⋯ , © . Then, we build the matrix Χ =jϕ��>� ����� ⋯ ���«�k  each column of which is ���U� = j�>��U� ⋯ ����U� ⋯kw for spatial variable 
index � = 1,2, ⋯ , ©. Then, the gramians on the whole spatial 
frame, can be computed as: 

   |}�0, u� = Χw ∙ + Λ���__wΛw���
� ∙ Χw�  

               |��0, u� = Χw ∙ + Λw���Λ���
� ∙w� Χ 

Remark 2. The gramians are derived by using the infinite 
dimensional block-diagonal matrix Λ��� containing sine and 
cosine functions and consisting of the j2 × 2k block matrices 

Λ���� = � cos �RS, � sin �RS, �− sin �RS, � cos �RS, �  , which are similarly 

equivalent  to the matrices:  Λ̄����
= °cos y±� � + ² sin y±� � 0

0 cos y±� � − ² sin y±� �³  
=   3�´�RS, � �M´�RS, �4 

where the above expression follows from the Euler’s formula. 
Thus, it is clear that, matrix Λ��� satisfies the properties of a 
strongly continuous ��  – semigroup. For practical 
computational purposes however, the infinite dimensional 
matrix Λ���  has to be truncated. The truncation introduces 
some errors of approximation, which have to be analyzed 
carefully.   

 Remark 3. The expressions for the gramians consist of two 
parts: one depending on spatial coordinates and the other one 
obtained from integration of certain infinite dimensional 
matrix on a finite interval of time. The second parts of the 
gramians are similar to the gramians for lumped parameter 
systems and similarly are positive definite or semidefinite 
matrices. If we fix the spatial coordinate, the obtained 
expressions are quadratic forms and show the immediate 
relation to energy interpretation of these system constructions 
in the finite and infinite dimensional cases.  

V. CONCLUSION 

This paper considers the problem of controllability and 
observability gramians computation for linear, time-invariant 
hyperbolic distributed parameters systems. The system under 
consideration is the vibrating string system. The weak solution 
of this system is obtained by applying the time-space 
separation approach, the method of Fourier and by using the 
spectral decomposition of the Laplace operator. Similarly to 
the case of lumped parameter systems, the weak solution of 
the wave equation is divided into two parts. The first part is 
due to the initial conditions of the hyperbolic partial 

differential equation. Based on this zero input solution, the 
observability gramian is derived. The second part is due to the 
external input effect. Based on this solution, the controllability 
gramian is obtained. The differences between the state space 
realizations in the distributed parameter and the lumped 
parameter cases are also discussed. It is shown that, the main 
difference evolves from the operator interpretation of the 
system dynamics. Based on this operator interpretation, the 
results for distributed parameter systems are derived as 
generalizations for the lumped parameter system results. The 
computational effectiveness of the obtained results is due to 
the successful application of the time-space separation 
principle, which is one of the basic principles for construction 
of system characteristics in the distributed parameter case. The 
obtained gramians are easy to compute and require elementary 
operations to derive. The approximations of the so obtained 
gramians can be used for solving many control theoretic 
problems, like model reduction, minimum energy control and 
many others. 
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