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Abstract: This paper considers the problem of rational function approximation of the relay with
hysteresis characteristic. The relay with hysteresis element has differential-based characteristic
with memory, which is rate dependent and two-valued, involving the input signal velocity in
its description. The presented model includes two ideal relay characteristics, which selection is
depending on the input behavior. The rational function description is implemented for analytical
approximation of the relay switching behavior. Both relay discontinuous jumps are approximated
in terms of a hyperbolic tangent function, which on its own turn is replaced by continued fraction
and Pade series expressions. The nearness of approximation is achieved by using one parameter
descriptions for the hyperbolic tangent function. The errors of approximation of the ideal relay
characteristic are also evaluated.
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1. INTRODUCTION

Dynamical system modeling is related to the creation of
simple, adequate and accurate mathematical descriptions
for a given physical process for the purpose of its simula-
tion and control. A special feature in modeling nonlinear
control systems is the existence of hysteresis loops. Hys-
teresis is a phenomenon that is observed in many physical
processes starting from mechanical devices and proceeding
further to ferromagnetic materials and electrical circuits.
The origin of hysteresis is in the existence of multiple state
equilibria associated with system dynamics. The hysteresis
nonlinearity can lead to performance degradation mainly
in positioning accuracy of system performance, see Tan
and Ram (2009). The difficulty in modeling hysteresis
loops results from the existence of multivalued behavior
that usually leads to energy storage in the system. At
the same time, the energy storage is a frequent case of
instability and self-sustained oscillations. The multivalued
feature of hysteresis is due to the intrinsic memory effect,
which is scale invariant. The memory effect is characterized
by the property, that the response to particular changes
is a function of preceding responses. Thus, corresponding
to each input value, two output values of the hysteresis
characteristic are possible and which one of these two
values will occur depends on the history of the input.
The memory property characterizes the rate-independent
effect of the hysteresis loop, see for example Bermudez et
al. (2020). This effect means that the branches of the
hysteresis loop are determined only by the past extremum
values of the input, while the speed of the input varia-
tions has no influence on branching. From the other side,
the rate-dependent effect of the hysteresis loop indicates
that the branching depends on the time scale variations.
Thus, the output present value depends not only on the
input present value but also on its velocity. The physi-

cal phenomenon of hysteresis has been observed in many
fields of physics and engineering, just to mention friction,
ferromagnetism, superconductivity, adsorption, mechan-
ics, electrodynamics and others. The study of hysteresis
physics and its modeling has a long history. The models
used for hysteresis description are divided by Hassani et
al. (2014) into two main groups: i) operator-based or
static models, which use operators to describe the physical
phenomenon and ii) differential-based or dynamic models,
which use differential equations to model the hysteresis
characteristic, see Macki et al. (1993). There exist four
well known operator-based models to describe hysteresis
loops: the Preisach model, the Krasnoselskii/Pokrovskii
model, the Prandtl/Ishlinskii model and the Maxwell/Slip
model, see for example Mayergoyz (1991). The Preisach
model is one of the most popular operator-based mod-
els for describing hysteresis loops. The classical model
is rate-independent and shows good performance char-
acteristics for narrow frequency band and no load con-
ditions of the explored materials. At the same time, the
Preisach model has some disadvantages like difficulties in
constructing the inverse characteristic, dependence of its
accuracy from the collected amount of data and others. In
order to overcome these difficulties, extensions from the
classical Preisach model are obtained in the form of the
Krasnoselskii/Pokrovskii model and the Prandtl/Ishlinskii
model. The Krasnoselskii/Pokrovskii model developed by
Krasnoselskii and Pokrovskii (1989), is an operator-based
model, where the hysteresis loop description is derived as
a linear combination of hysteresis operators. The model
is successfully used to describe the hysteresis nonlinear-
ity for shape memory alloys, shown in Zakerzadeh et al.
(2011) and for continuous linearization in adaptive con-
trol, shown in Glen et al. (1998). Although the Kras-
noselskii/Pokrovskii model improves the performance of
the classical Preisach model, it still exhibits some dif-



ficulties in deriving the inverse hysteresis characteristic,
which makes it difficult to use in real-time applications.
The Prandtl/Ishlinskii model possesses a simpler math-
ematical structure than the former two models and is
developed to overcome their disadvantages, finding appli-
cation for hysteresis modeling in materials. This model
has been successfully used in Krejci and Kuhnen (2001)
for obtaining inverse models for a variety of hysteresis
loops. The Prandtl/Ishlinskii model can be used to model
asymmetric hysteresis loops as well, see Kuhnen (2003).
The Maxwell/Slip model is an operator model that finds
its application to express hysteresis nonlinearity in both
mechanical and electrical systems. Its original application
is in analyzing friction behavior for mechanical systems,
see Hassani et al. (2014). The differential-based models
use differential equations to describe the hysteresis phe-
nomenon, see for example Visintin (1994). The Bouc/Wen
model utilizes a nonlinear differential equation having the
input derivative in its description. It is shown in Bellmunt
et al. (2008) that, the Bouc/Wen model is especially
suited for hysteresis loop approximation in control system
applications. The main disadvantage of this model is that
it is not invertible and needs some kind of compensation
in the feedback structure. Another differential-based hys-
teresis model is the Duhem model. The main idea behind
the Duhem model is to describe how the output variable
changes its behavior when the input variable changes its
direction. The Duhem model is rate-independent and uses
polynomial approximation for the hysteresis loop esti-
mation procedure, see Chen et al. (2011). Some other
differential-based models are the Jiles/Atherton model,
the Chua model, the Hodgon model and others, for more
information see Nova and Zemanek (2010).

A special type of hysteresis characteristic representation
is the relay with hysteresis nonlinear element, which is
considered in Bagagiolo and Zoppello (2020) as represen-
tative of a delayed relay operator with thresholds. Relay
with hysteresis elements play important role in nonlin-
ear system analysis and design, and are associated with
many practical control system problems. Control system
elements having two-valued inertial characteristics are fre-
quently part of numerous mechanical and electrical ap-
plications. It is shown by Bermudez et al. (2020) that
in electrical engineering applications, the relay with hys-
teresis characteristic model can be used to estimate the
energy losses in electrical machines for the purpose of
electrical device design. Another very effective application
of the relay with hysteresis characteristic is in automatic
tuning of PID regulators. For the purpose of tuning, a
relay with hysteresis is inserted in the closed loop and the
PID regulator is temporarily disconnected. For many phys-
ical processes, the relay feedback initiates self-oscillations,
which can be analyzed by the describing functions method.
This kind of relay experiment can be easily automated and
the regulator adjustment can be obtained very shortly, see
Hägglund and Åström (2011). Relay with hysteresis char-
acteristics find their application also in many algorithms
and logic schemes, where switching with phase delay is
taking part. For most of these cases, the analysis process
is simplified if the relay with hysteresis characteristic is
approximated by using analytic functions.

Fig. 1. The relay with hysteresis nonlinear characteristic

This paper considers the rational function approximation
of the relay with hysteresis characteristic. A differential-
based model involving the input signal velocity is devel-
oped assuming rate-dependent description. The switching
behavior of the relay is approximated by using hyperbolic
tangent functions. Finally, continued fraction and Pade
series approximations of the exponential functions are
used to estimate the hyperbolic tangent function thus,
obtaining rational function approximation of the relay el-
ement. The closeness of the obtained characteristic curves
in terms of the corresponding approximation errors is also
discussed.

The main advantage of the presented approach is to use
smooth function approximation for the jump behavior of
the relay with hysteresis characteristic.The differentiabil-
ity property of the approximation function allows using
the presented model as part of different nonlinear methods,
where the characteristic differentiability is a major require-
ment for their employment. For example, the Lyapunov
based approach demands differentiability of Lyapunov
functions, which condition prescribes the approximation
model quite suitable for such applications.

2. ANALYTIC MODEL DEVELOPMENT FOR THE
RELAY WITH HYSTERESIS CHARACTERISTIC

We consider the nonlinear relay with hysteresis character-
istic shown in fig.1.

The usual mathematical expression describing this nonlin-
ear element is given as follows:

N(x) =


c, x ≥ a, ẋ > 0
−c, x < a, ẋ > 0
c, x > −a, ẋ < 0
−c, x ≤ −a, ẋ < 0

(1)

It is clearly seen that this characteristic is two-valued in
the interval −a < x < a. In this interval, the output
variable depends on the derivative of the input, i.e. for
ẋ > 0, N(x) = −c and for ẋ < 0, N(x) = c. At the points



Fig. 2. Ideal relay approximation: f(x) = tanh(Ax)
A = 1.0 ..., A = 2.0 - - -, A = 10.0 -.-.-, A = 100.0 —

x = ±a there is a jump in the output value and the relay
element exhibits switching behavior. Expression (1) can be
written in the form:

N(x) =
c

2
{sign(x− a)[1 + sign(ẋ)] (2)

+ sign(x+ a)[1− sign(ẋ)]}.
From the above expression is clear that, if ẋ > 0, the
second term in (2) is zero and the nonlinear relay with
hysteresis element behaves like an ideal relay element
switching at x = a. From the other side, if ẋ < 0, the first
term in (2) is zero and the nonlinear relay with hysteresis
element behaves like an ideal relay element switching at
x = −a. Therefore, in order to develop an analytical model
for the relay with hysteresis element, it is necessary to
develop analytical expressions for the ideal relay model, i.e.
for the sign(x) function. The ideal relay is a non-memory
nonlinear element characteristic, which can be represented
by the function:

N(x) = c · sign(x) =

{
c, x > 0
0, x = 0,
−c, x < 0

(3)

There is no convergent Taylor series for the function (3) at
x = 0. Similarly, orthogonal polynomial approximations
for such functions have very slow rate of convergence as
well. One possible solution of the approximation prob-
lem for the sign(x) function (3) is the usage of gate
functions, presented in Schetzen (1989). We consider an
analytical approximation for the sign(x) function as a
gate, expressed by the hyperbolic tangent function: f(x) =
tanh (Ax), where A is a parameter. Figure 2 presents
different plots of f(x) = tanh (Ax) for different values of
the parameter A, like A = 1, 2, 10, 100.

For A = 1, the function f(x) = tanh(Ax) ( the dotted
line ....) clearly deviates from the ideal relay characteristic.
Increasing the parameter A (A = 2, the dashed line - -) and
(A = 10, the dash-dotted line -.-.), the approximation gets
closer and closer to the ideal relay. Finally for A = 100
(the solid line —), the approximation of the ideal relay

almost coincides with the true characteristic and the dif-
ference between these two characteristics is insignificant.
The approximation error can be computed by using the
following error expressions:

• The mean square approximation error:

∆mse =

 1

b− a

b∫
a

[N(x)− f(x)]
2
dx


1
2

• The average relative approximation error:

∆are =
1

b− a
1

Nmax

b∫
a

|N(x)− f(x)| dx,

where Nmax = maxa≤x≤bN(x)
• The maximal absolute approximation error:

∆mae = max
a≤x≤b

|N(x)− f(x)|

For all three errors presented above, [a, b] is the interval
of observation, where the data is collected. The errors
of approximation of the ideal relay characteristic by the
function f(x) = tanhAx, using a step of δ = 0.01 on
the interval [−3, 3], for all three error criteria and different
values of the parameter A are presented in the table shown
below.

Table 1. Approximation errors for different A’s

∆mse ∆are ∆mae

A = 1 0.3562 0.2282 0.99

A = 2 0.2502 0.1137 0.98

A = 10 0.1061 0.0214 0.90

A =100 1.392·10−2 0.932·10−3 0.2384

The obtained results from table 1 clearly show that by
increasing the parameter value of A, the error of approx-
imation decreases for all three criteria. As higher is the
value of A, as smaller is the value of the approximation
error. By increasing A, the mean square approximation
error and the average relative approximation error crite-
ria give similar results as concerned rate of convergence.
Slightly higher values for the error of approximation gives
the maximal absolute error criterion.

Our next problem is to approximate the hyperbolic tan-
gent function in terms of rational functions of the argu-
ment. The computation of the hyperbolic tangent function,
available in the computer libraries in FORTRAN or C
languages are presented in Beebe (2017). It is shown that,
there exist four different regions, where the tanh(x) func-
tion is evaluated. Since the tanh(x) is bounded for all real
x, the limit value of the function for x =∞ is equal to one.
This case is suitably exploited in the computer algorithms
for the function evaluation, and for values of the argument
x > xlarge = 19.06155, the function tanh(x) acquires the
value of one. The selection of xlarge is based on the as-
sumption that for argument values x > xlarge, the expres-
sion 2

exp(2x)+1 will be negligible relative to one. Thus, for

x > xlarge, exp(2x)� 1 and therefore, 2
exp (2x) < B−t−1,

where B is the machine base with t fractional digits, see
Beebe (2017). If we accept as machine base B = 2, the

above inequality can be simplified as (t+2) ln (2)
2 < x. In

the limit case, transforming the inequality to equality, and



assuming t = 53 digits for double precision, we obtain
xlarge = 19.06155. In the derivations to follow, we divide
the interval for computing tanh(x) in two parts. In the first
interval for |x| ≤ xlarge, the hyperbolic tangent function
is computed by the expression tanh(x) = 1 − 2

exp(2x)+1 .

In the second interval for |x| > xlarge, the value of the
hyperbolic tangent function is considered as one. It is clear
that, in order to compute the tanh(x), we need to compute
the exponential function exp (2x). Therefore, the rational
approximation of the sign(x) function reduces to rational
function approximation of exp (2x).

3. RATIONAL FUNCTION APPROXIMATION OF
THE EXPONENTIAL FUNCTION

There exist different methods for rational function ap-
proximation of the exponential function. We consider here
two of these methods: the continued fraction method and
the Pade approximation method. The continued fraction
method is based on using continued fractions for repre-
sentation of the exponential function, which gives a con-
venient mechanism for its computation. First Euler has
obtained the continued fraction expansion of exp (x) and
showed that it is convergent for any real and complex value
of the argument. The advantage of using continued frac-
tions is the existence of recurrent procedure for computing
the rational function parameters. The approximation error
decreases by increasing the approximation index, i.e. the
sum of the numerator and denominator polynomials or-
der. All computed approximations having the same index,
require the same number of elementary computations and
have almost the same precision. The main disadvantage
of continued fractions is the possible loss of accuracy
when subtracting nearly equal quantities. The continued
fraction expansion of the exponential function exp (x) can
be presented as follows, see Demidovich and Maron (1987):

exp (x) =

[
0;

1

1
,
−2x

2 + x
,
x2

6
,
x2

10
,
x2

14
, . . .

x2

4n+ 2
, . . .

]
.(4)

The above continued fraction can be rewritten in terms of
two variables ratios as:

exp (x) =

[
a0,

b1
a1
,
b2
a2
,
b3
a3
,
b4
a4
,
b5
a5
,
b6
a6
, . . .

]
(5)

Using expressions (4) and (5), the exponential function
can be evaluated as a ratio of two polynomials Pn(x) and
Qn(x), which satisfy the following recurrence relations, see
Demidovich and Maron (1987):

Pk+1(x) = ak+1Pk(x) + bk+1Pk−1(x) (6)

Qk+1(x) = ak+1Qk(x) + bk+1Qk−1(x), k = 1, 2, . . . (7)

where the initial polynomials are defined by the expres-
sions:

P0(x) = Q0(x) = 0, P1(x) = Q1(x) = 1 (8)

Using the recurrence relations (6), (7) and (8), we obtain
the polynomials P9(x) and Q9(x) as:

P9(x) = α0 + α1x+ α2x
2 + α3x

3 + . . . α7x
7 + x8

Q9(x) = α0 − α1x+ α2x
2 − α3x

3 + . . .− α7x
7 + x8

where the coefficients αi, i = 1, 2, . . . , 7 acquire the
following values:

α0 = 518918400, α1 = 259459200, α2 = 60540480,

α3 = 8648640, α4 = 831600, α5 = 211440,

α6 = 2520, α7 = 272

and the exponential function is approximated by exp(x) ≈
P9(x)
Q9(x)

. Using the continued fraction method, we obtain

for x = 1, e ≈ 2.718281828459045 which is evaluated
with error ε = O(10−16). Applying the continued fraction
method for the exponential function evaluation, we obtain
the following approximation for the hyperbolic tangent
function for the values |x| < xlarge = 19.06155 by the
rational function expression:

tanh(x) ≈ 1− 2
P9(2x)
Q9(2x)

+ 1
. (9)

The other method, which we use for obtaining rational
function approximation of the exponential function exp (x)
is the Pade series method, see Baker and Graves-Moris
(1981). The Pade approximation method is part of the
shift operator methods like the Laguerre, Kautz and oth-
ers, for rational function approximation of exponential
functions. It is especially suited to work with in the com-
plex domain, where Pade approximations are frequently
used to approximate the time delay operator, see for
example Perev (2011). The Pade approximation method
has good convergent properties, but requires solving a
linear system of algebraic equations for computing the
rational function parameters. Pade series is based on the
Taylor series presentation of the approximated function.
The Taylor series of the exponential function is given by
the expression:

exp(x) = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ . . .+

xn

n!
+ . . . (10)

The Pade series approximation is a rational function,
which is developed from the Taylor series and contains as
many parameters as the corresponding parameters in the
Taylor series. For example, for a Taylor series expansion
with N parameters, a Pade series representation can be
obtained as:

PL,M (x) =
a0 + a1x+ a2x

2 + . . .+ aLx
L

1 + b1x+ b2x2 + . . .+ bMxM
(11)

where L+M + 1 = N . In (11), we have L+ 1 parameters
in the numerator and M parameters in the denominator,
which can be computed from the coefficients of the Taylor
series, satisfying the following relation, see Baker and
Graves-Moris (1981):

∞∑
i=0

cix
i ≈ a0 + a1x+ a2x

2 + . . .+ aLx
L

1 + b1x+ b2x2 + . . .+ bMxM
(12)

The Pade series parameters computation is straightfor-
ward as:

(c0 + c1x+ c2x
2+ . . . )(1 + b1x+ . . .+ bMx

M ) (13)

= (a0 + a1x+ . . .+ aLx
L)

For example, if the number of the available Taylor series
coefficients is N = 15, the following Pade series P7,7(x)
can be computed by satisfying the relations:



c0 · 1 = a0,
c0b1 + c1 = a1,

c0b2 + c1b1 + c2 = a2,
...

...
c0b7 + c1b6 + . . .+ c6b1 + c7 = a7,
c1b7 + c2b6 + . . .+ c7b1 = −c8,
c2b7 + c3b6 + . . .+ c8b1 = −c9,
c3b7 + c4b6 + . . .+ c9b1 = −c10,

...
...

c7b7 + c8b6 + . . .+ c13b1 = −c14.

(14)

The coefficients bi, i = 1, 2, . . . , 7 can be obtained by
solving the system of linear algebraic equations as follows:

c1 c2 c3 . . . c7
c2 c3 c4 . . . c8
c3 c4 c5 . . . c9
...

...
...

. . .
...

c7 c8 c9 . . . c13

 ·

b7
b6
b5
...
b1

 = −


c8
c9
c10
...
c14

 (15)

The coefficients ai, i = 1, 2, . . . , 7 can be obtained by using
the first seven equations of (14). Solving equations (14)
and (15), we obtain the computed Pade series approxima-
tion model P7,7(x) for the exponential function exp (x),
which is given by the following rational function:

P7,7(x) =
1 + β1x+ β2x

2 + β3x
3 + . . .+ β6x

6 + β7x
7

1− β1x+ β2x2 − β3x3 + . . .+ β6x6 − β7x7

where

β1 = 0.5 β2 = 0.1154 β3 = 0.016 β4 = 0.0015

β5 = 8.74 · 10−5 β6 = 3.24 · 10−5 β7 = 5.78 · 10−8

Using the Pade series approximation method for exp(x) ≈
P7,7(x), we obtain the exponential function when x = 1,
as e ≈ 2.718281828458230 which is evaluated with error
ε = O(10−12).

4. RATIONAL FUNCTION APPROXIMATION OF
THE HYPERBOLIC TANGENT FUNCTION

We consider now the rational function approximation of
tanh (x). For the values of the input |x| ≤ xlarge =
19.06155, the hyperbolic tangent function takes on the
form tanh(x) = 1 − 2

exp(2x)+1 and for |x| > xlarge, we

consider the function value as tanh(x) = ±1. We as-
sume rational function representation of the exponential
function and thus, approximating the hyperbolic tangent
function as tanh(x) = 1 − 2

G(2x)+1 , where for continued

fraction approximation G(2x) = P9(2x)
Q9(2x)

and for Pade

series approximation G(2x) = P7,7(2x). For the purpose
of sign(x) function approximation, we consider the hyper-
bolic tangent function with scaled argument tanh(Ax) ≈
1 − 2

P9(2Ax)

Q9(2Ax)
+1

for the continued fraction approximation

and tanh(Ax) ≈ 1 − 2
P7,7(2Ax)+1 for the Pade series ap-

proximation. Fig.3 shows the tanh (Ax) function and its
approximation in terms of continued fractions and Pade
series for the values of the argument |x| ≤ 0.1 and for the
values of the parameter A = 30 and A = 100.

Fig. 3. Rational function approximation of tanh(Ax):
continued fractions (−−), Pade series (−.−)
(both curves are indistinguishable)

From fig.3 is clearly seen that, all three curves: tanh(Ax)
(...), the continued fraction approximation of tanh (Ax)
(–) and the Pade series approximation of tanh (Ax) (-.-
.), for both cases A = 30 and A = 100, coincide. This
closeness of the results can be explained with the good
approximation properties of the rational function repre-

sentations G(2Ax) = P9(2Ax)
Q9(2Ax) and G(2Ax) = P7,7(2Ax)

for the exponential function exp(2Ax). A special attention
should be placed on the x-axis scaling. This type of ap-
proximation is valid only on a limited time interval, where
2Ax ≤ xlarge = 19.06155. Next we consider the problem
of the rational function approximation for the relay with
hysteresis characteristic. From expression (2) is evident
the existence of four sign(·) functions for the relay with
hysteresis model. Two of these functions depend on the ar-
gument derivative sign(ẋ), and two of them depend on the
argument itself sign(x). When the argument x increases,
the relay with hysteresis characteristic is equivalent to the
relay characteristic N(x) = c · sign(x− a), where a is the
displacement from zero, and when the argument decreases,
the relay with hysteresis characteristic is equivalent to the
relay characteristic N(x) = c · sign(x + a). We choose
a = 1.0, A = 100.0 and c = 1.0. Fig.4 shows the relay
with hysteresis characteristic, obtained by rational func-
tion approximation in terms of continued fractions and
Pade series.

As can be expected, both approximations, the continued
fraction and the Pade series representations almost per-
fectly coincide with the relay with hysteresis characteristic.
Both approximation curves exhibit switching at the points
x = ±a, demonstrating analytical description in terms of
rational function representation for the jump phenomenon.

5. CONCLUSION

The paper considers the problem of rational function ap-
proximation of the relay with hysteresis nonlinear charac-
teristic. The presented relay with hysteresis model is rate
dependent, two-valued, nonlinear differential-based model



Fig. 4. Rational function approximation of relay with
hysteresis by continued fractions and Pade series

involving the input signal velocity in its description. We
developed an analytical model, where the relay jump be-
havior is approximated by the hyperbolic tangent function,
which on its own turn is represented by continued fractions
and Pade series estimation of the exponential function.
The presented model contains one parameter, which value
determines the proximity of the approximation to the
true characteristic. It is shown that in close neighborhood
around the relay discontinuous jump, the approximation
functions perform well and give accurate results. The ap-
proximation errors of the rational function representations
are also discussed. It is shown experimentally, that both
methods for rational function approximation of the expo-
nential function, continued fractions and Pade series, give
almost the same results in terms of computing complexity
and accuracy.
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