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Abstract: Contemporary thermoplastic monomer-free prosthetic materials are widely used nowadays,
and there are a great variety available on the market. These materials are of interest in terms of the
improvement of the quality features of the removable dentures. The aim of this study is to establish
how minimal changes in the laboratory protocol of polyamide prosthetic base materials influence
the surface texture. Two polyamide materials intended for the fabrication of removable dentures
bases were used—Perflex Biosens (BS) and VertexTM ThermoSens (TS). A total number of 20 coin-
shaped samples were prepared. They were injected under two different modes—regular, as provided
by the manufacturer, and modified, proposed by the authors of this study. Scanning electronic
microscopy (SEM) under four magnifications—×1000, ×3000, ×5000, and ×10,000—was conducted.
With minimal alterations to the melting temperature (5 ◦C) and the pressure (0.5 Bar), in Biosens, no
changes in terms of surface improvement were found, whereas in ThermoSens, the surface roughness
of the material significantly changed in terms of roughness reduction. By modifying the technological
mode during injection molding, a smoother surface was achieved in one of the studied materials.

Keywords: thermoplastic materials; laboratory protocol; dentures; texture; roughness

1. Introduction

The quality and efficiency of prosthetic treatments depend on the properties of the base
prosthetic materials. It is often the case that with removable dentures, complications occur,
e.g., denture stomatitis, caused by microflora with various degrees of virulence. Dental
prostheses are potential sites of adsorption and colonization of various microorganisms.
One of the conditions determining the degree of bacterial adhesion and colonization
resistance is the surface structure of the base material.

Denture surface can be affected by various mechanisms. Such mechanisms may
include aging and wear and tear [1]. Professional hygienic and cleaning procedures,
as well as the instruments used during these procedures, increase the roughness of the
material and the risk of future bacterial or fungal contamination [2]. Substantial changes
in the surface morphology, increased hydrophilicity and higher optical density of the
adhered microorganisms are observed when various chemical agents are used for denture
cleaning [3].

Studying at a molecular level the correlation between the surface of the restorative
material and the microorganisms in the oral cavity, G. Allias concluded that a conditio sine
qua non for micro-floral contamination is related to the material’s texture and depends
on the surface tension [4]. The higher the surface tension, the higher the probability for
pathogenic microbial contamination is. The surface tension of a given material depends
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on the material’s technology and processing algorithm, as well as the inclusion of other
materials over the prosthetic material’s surface that alter the surface tension [5].

The most common pathogen causing denture stomatitis is C. albicans [6]. C. albicans,
as a conditionally pathogenic species, can asymptomatically colonize both the surfaces of
the denture and the mucosa [7]. Al-Dwairi emphasized the significance of Candida spp.
isolated from the fingertips of removable denture wearers as a source of re-infection of the
oral cavity [8]. L. Gendreau identified the spread of denture stomatitis in approximately
70% of the removable denture wearers, and the frequency is higher in elder patients of the
female gender [9].

Conventional acrylic resin exhibits highly hydrophilic properties and solubility [10],
as well as heterogeneity of the surface texture, further causing internal and surface tension
and the formation of cavities where microorganisms infiltrate and propagate. This leads
to the disturbance of the micro-biocenosis in the oral cavity, inflammation of the mucosa
beneath the denture and the development of denture stomatitis of various etiologies [11].

Nowadays, a great variety of prosthetic materials are available on the market. How-
ever, the issue of their interaction with the oral microflora, as well as how the microflora
affects these materials, is still understudied. Therefore, the correlation between the mi-
crofloral adhesion to the various prosthetic materials and their texture remains a topical
question, as does the search for solutions for the improvement of the microstructure and
degree of roughness of these materials.

Contemporary thermoplastic monomer-free prosthetic materials are of interest in
terms of the improvement of the quality features of removable dentures. However, they
are still not sufficiently explored regarding their microbial contamination and colonization.
Reliable information can be obtained by performing microbiological and high-magnification
microscopic studies in parallel. This would allow for exploring the structures at a nano level.
The purpose of this study is to establish how minor alterations in the laboratory protocol of
polyamide prosthetic base materials influence the surface texture of these materials.

2. Materials and Methods
2.1. Materials and Samples

In this study, two polyamide materials intended for the fabrication of removable
dentures were used—Perflex Biosens (BS) and VertexTM ThermoSens (TS). A total number
of 20 coin-shaped samples were prepared with a diameter of 5 mm and 1 mm thickness
(Figure 1).
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2.2. Methods
2.2.1. Technological Mode

The samples were injected under two different modes—regular, as provided by the
manufacturer (Table 1), and modified, proposed by the authors of this study (Table 2). Ten
samples of the two tested materials were injected under the regular technological mode,
and the other ten samples, five of each material, were injected under a modified mode.

Table 1. Materials, technological parameters, and manufacturer.

Material Type Time Temperature Pressure System Manufacturer

Perflex Biosens
(BS)

Polyamide (MSDS: no
declaration) 18 min 300 ◦C 8–9 Bar Thermopress 400 Perflex, Israel

VertexTM
ThermoSens (TS)

Polyamide (MSDS: no
declaration) 18 min 290 ◦C 6 Bar Vertex Thermoject 22 Vertex Dental B.V.,

The Netherlands

Table 2. Materials, modified technological parameters, and manufacturer.

Material Type Time Temperature Pressure System Manufacturer

Perflex Biosens
(BS)

Polyamide (MSDS: no
declaration) 18 min 305 ◦C 9.5 Bar Thermopress 400 Perflex, Israel

VertexTM
ThermoSens (TS)

Polyamide (MSDS: no
declaration) 18 min 295 ◦C 6.5 Bar Vertex Thermoject 22 Vertex Dental B.V.,

The Netherlands

2.2.2. Scanning Electronic Microscopy (SEM)

The test samples from the two polyamide materials, under the two different technolog-
ical modes, were plated in 24-carat gold powder (Figure 2) and were scanned using SEM in
four different magnifications: ×1000, ×3000, ×5000, and ×10,000.
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2.2.3. Microbiological Evaluation

Microbiological evaluation of mucosal and denture surface samples was performed.
Samples were collected by swabbing and transported to the laboratory of microbiology
within the same day. Swabs were cultured on Sabouraud-dextrose agar (SDA) and incu-
bated for up to 48 h at 30 ◦C. Colony identification was performed by using matrix-assisted
laser desorption time-of-flight mass spectrometry (MALDI-TOF MS, Vitek MS, bioMerieux,
Craponne, France). Samples were stained with Löffler methylene blue and observed using
×100 immersion oil microscopy.
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3. Results
3.1. Samples under Regular Technological Mode

The investigation with SEM methods of the samples injected under the regular techno-
logical mode showed different types of defects and numerous spots of unevenness on the
surface of both materials under all magnifications. (Figures 3a,b and 4a,b).
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3.1.1. Samples Made of Biosens

On the surface of the BS test samples, holes, openings, deep grooves, caverns, and
some areas of a rough surface resembling orange peel can be observed. In the ×5000
magnification photo, the dimensions of these surface defects can be measured, and they
vary a lot. Portions of the surface display a mica-like texture.

3.1.2. Samples Made of Thermosens

On the TS surface, expressed unevenness with openings, grooves, caverns and a
mica-like surface can be observed, along with some bulging formations and deep and
undermined areas, and at some points surface destruction can be observed. In the ×5000
magnification photo, it can be observed that these defects form undermined and predilec-
tion zones for the retention of different microorganisms.
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3.2. Samples under Modified Technological Mode
3.2.1. Samples Made of Biosens

Observations of the surface of BS samples prepared under the modified technological
mode do not show any significant differences in the defects compared to the test samples
injected under optimal fabrication parameters. Under ×1000 magnification, slight smooth-
ing of the texture is observed; however, the mica-like surface remains unchanged, and the
presence of openings and canals is clearly visible (Figure 5a,b). A magnification of ×5000
reveals that these openings grow into deep caverns more than 20 microns in size.
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3.2.2. Samples Made of Thermosens

Observations of the surface of TS test samples prepared under the modified techno-
logical mode show significant differences in the surface characteristics compared to the
test samples injected under the optimal technological mode. Under ×1000 magnification,
smoothening of the texture is observed, where shallow grooves and unevenness with a
bubble-like shape can be seen; the structure is slightly wavy (Figure 6a,b). Under a magnifi-
cation of ×5000, the surface is orange peel-textured; however, the uneven areas and deep
defects do not exceed 1–3 microns. It should be noted that the refinement of the surface
texture of this material is a direct result of the technological mode modification, but the
effect on the mechanical properties has yet not been investigated.
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Although the form of the defects is too complex to be measured precisely, some
dimensions are given in the following table (Table 3).

Table 3. Materials, mode, and dimensions of the defects.

Material

Mode

Sample No.1
Length/Width

(Microns)

Sample No.2
Length/Width

(Microns)

Sample No.3
Length/Width

(Microns)

Sample No.4
Length/Width

(Microns)

Sample No.5
Length/Width

(Microns)

Mean Value
Length/Width

(Microns)

Thermosens
Regular mode 15/18 12/12 20/14 15/12 16/15 15.6/14.2
Modified mode 1/1 1.5/1 3/1 1.2/1 1/1 1.54/1

Biosens
Regular mode 20/25 23/21 15/14 21/20 28/25 21.4/21
Modified mode 12/10 14/10 15/15 10/10 12/10 12.6/11

Ten patients were included in this pilot study. Five Thermosens dentures and five
Biosens dentures were created. The patients were examined during regular (every
two weeks) follow-ups. Two of them (one male, 72 years old and one female patient,
69 years old) showed clinical symptoms of denture stomatitis (Figure 7).
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The method of direct fluorescence visualization with the help of the VELscope® (LED
Dental, Inc., White Rock, BC, Canada) device was applied. Contamination not only of
the mucosa (Figure 8a,b) beneath the denture but also on the denture surface itself was
ascertained (Figure 9).
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The symptoms started at the end of the sixth week for the female patient and at the
beginning of the tenth week for the male patient. Neither of them suffered any general disease
(except high blood pressure for the male patient and osteoporosis for the female patient). Both
were treated with dentures made from Thermosens (under regular laboratory mode).

After culturing of the samples on Sabouraud-dextrose agar (SDA), the present colonies
were subsequently identified by MALDI-TOF MS as Candida albicans. (Figure 10a,b).
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methylene blue stain, ×100 immersion oil microscopy.

4. Discussion

The oral cavity is a habitat for microorganisms in large quantities and numerous
varieties—pathogens, conditional pathogens, and saprophytes. The coarse and rough sur-
face of dental prosthesis, the retention of food, and the constant humidity and temperature
present suitable conditions for microbial contamination, colonization and propagation.

The surface characteristics of thermoplastic polymers exhibit numerous defects and
a high level of roughness [12] that allow for the microbial colonization of their surface.
Thermoplastic materials are challenging in terms of mechanical processing, making it
difficult to produce a smooth and glossy surface [13]. The lack of this smoothness represents
the optimal conditions [14] for the adhesion of microbial cells [15]. Although polyamide
materials are characterized by a high level of mechanical properties, a modification [16]
of the technological parameters [17,18] of their injection could be attempted to achieve an
optimal texture. This modified surface needs to be resistant to impacts that would increase
roughness [19,20] or deteriorate the quality of the material [20,21].
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Surface modification could be a possible approach to identify surfaces that possess
anti-biofilm properties [22]. The injection mode is precise and too short in duration, yet it
depends on conditions and factors that could be manipulated, and the injection molding
devices allow for it.

Attempting to improve the polyamide materials’ surface characteristics so that a
surface with better anti-microbial [23] and bacterial attack inhibition effects is obtained,
as well as a reduction in microbial activity [24–30], the authors altered some of the factors
in the injection molding process. These factors and conditions are interdependent and
mutually affecting.

With minimal alteration of the melting temperature (5 ◦C) and the pressure (0.5 Bar),
no changes in terms of surface improvement were found in Biosens. What led us to apply
variation of the temperature was the expectation that this would result in more even and
more thorough melting of the material inside the machine tumbler. On the other hand,
with a rise in temperature, the melt flow speed in the sprues changes as well, leading to a
quicker filling of the mold, preventing uneven cooling of the material.

With minimal alteration to both the temperature (5 ◦C) and the pressure (0.5 Bar) in
ThermoSens, the surface roughness of the material is significantly changed [31] in terms
of roughness reduction [32]. This positive change in the surface texture is likely to result
in: an improvement [33] in the mechanical strength and physical properties, a lack of
microflora [34] or minimal changes [21], as well as a reduction in the conditions for colony
formation [35,36]. To ascertain the presence or absence of such changes, further studies
are necessary, including not only in vitro, but in vivo tests as well. A few volunteers are
planned to be examined, treated with dentures manufactured using the modified laboratory
protocol in a future study.

Ayaz et al. stated that striving for improvements in the texture of injection-molded
materials is based on the fact that surface imperfection affects the adhesion and colonization
of pathogenic microorganisms. Biofilm accumulation is the main factor in the etiology of
denture stomatitis, emerging due to surface irregularities [37].

Verran and Maryan [38], Quirynen et al. [39], and Radford et al. [40] reported that
dental materials on polyamide bases are rougher than PMMA materials. This statement
is in agreement with Yunus et al. [41], Ucar et al. [42], and Kurkcuoglu et al. [43]. In their
studies, they found a direct correlation between the surface roughness and adhesion of
microorganisms. These findings correspond with some previous investigations of the
authors of this article.

Kohli and Bhatia stated that the hydrophilic behavior of polyamide materials is due
to the amide groups in their polymeric chain. Nylon, being hygroscopic, swells when
immersed in a humid medium, increasing its irregularities [44].

Some substances, including saliva, alcohol, and acids produced by bacteria, may affect
the structure and surface features of the restorations [45]. Arslan et al. assumed that
material aging increases roughness and hydrophilicity [46]. Atalaya et al., in their study,
declared that a smoother surface guarantees higher hydrophobicity and lower surface
tension [47]. Liebermann et al. concluded that increased temperature and pressure of
injection may change the polarity of the molecules, and that this can consequently cause
alterations in the surface structure and wetting [48].

It is assumed that raised temperature leads to better and more even melting of the
material, while increasing pressure leads to quicker and more uniform filling-up of the
mold and therefore to its more uniform cooling down, both on the surface and internally.
Both factors can reduce the cooling-induced tension on the surface and within the mold,
and finally, this can cause the smoothing of the surface texture of the injected material.

5. Conclusions

By modifying the technological mode during injection molding, a smoother surface
was achieved in one of the studied materials, and this variation could affect other factors
and conditions during the process. Further studies should be conducted to find out whether



Materials 2022, 15, 6633 9 of 10

such changes in the laboratory protocol affect the mechanical properties of these materials,
and if so, in what range.
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