

Software implementation of CRA and TRA to recover the

AES-128 key using side-channel signals with Python3
Desislava Nikolova1, Ivaylo Vladimirov2 and Zornica Terneva3

Abstract – In this scientific paper is presented a software

implementation of two side-channel radio attacks: CRA –

Correlation Radio Attack and TRA – Template Radio Attack.

The main goal is to recover the AES-128 key from an unknown

system. Both attacks are developed in Python3 using a Linux-

based computer. The algorithm uses Probability Density

Functions and the Hamming-weight model. The results are

calculated by the Partial Guessing Entropy. The software is run

on the CPU.

Keywords – Side-channel attacks – Correlation Radio Attack,

Template Radio Attack, AES-128, Python3, Hamming-weight

model, Partial Guessing Entropy.

I. INTRODUCTION

Every type of system has sound, heat, light or other

electromagnetic radiation while operating. They can be

correlated with what is happening inside the system. These

physical sources can be used as side channels if they leak out

information (Figure.1). Side channel attacks are used to derive

the key of a cryptosystem and use its weakness in the physical

implementation [1].

In this paper, we are going to analyze two types of attacks -

TRA and CRA. Template radio analysis relies on a

multivariate model of the side-channel traces. Here we present

a practical and efficient implementation. CRA correlation

radio analysis is used to identify the parameters of the leakage

model.

All systems used in these experiments are using AES-

128(Advanced Encryption Standard). AES is a specification

for the encryption of different electronic systems and its data.

One of the leading programming languages in data science

is Python. Although it might be a little bit slow, it gives a lot

of solutions to the most common problems. The best

advantage of the language is the wide variety of libraries and

already developed tools in it.

In this paper we are presenting a few python libraries,

which are going to be used in the software implementation.

The name of the package click comes from Command Line

Interface Creation Kit. It gives the opportunity the command

line interfaces to be written with as little code as possible in

order to function correctly.

Numpy, usually referred as np is the most common library

for dealing with arrays and computing them fast in python.

Pyplot from matplotlib is used mainly for visualization of the

results. The package os in this approach is used only for

finding the correct path and managing the files in the

directory.

Fig. 1. Steps that lead to the radio transmission of the leak

The function multivariate_normal from scipy.stats is used

for the normalization process in CRA. Pickle implements

binary protocols for serializing and de-serializing a structure

just like our configuration. The library itertools is used

because it implements a number of iterator building blocks

similar to Haskell. And finally binascii contains methods to

convert from binary to various ASCII-encoded binary

representations.

II. MATH MODEL OF THE ATTACKS

A. Correlation Radio Attack (CRA)

The first step of the CRA is to generate an intermediate

value during the cryptographic operation, encryption or

decryption. The selection function must be chosen. This is a

function of a variable data value and part of the key. In the

equation below I is the intermediate value. The variable data

sample which is generally plain text or cipher text is d and k is

a part of the key which will be called the subkey from this

point on [2].

I = f(d, k) (1)

Then measurements must be done while the device is doing

the cryptographic operation.

In addition, the intermediate values for each of the used

variable data samples and the power consumption for those

intermediate values must be calculated using a power model

such as the Hamming Distance Model. This calculation must

be repeated for all possible values of the subkey.

1Desislava Nikolova is with the Faculty of Telecommunications at

Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,

Bulgaria. E-mail: desislava.v.nikolova@gmail.com
2Ivaylo Vladimirov is with the Faculty of Telecommunications at

Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,

Bulgaria, E-mail: ivaylo.h.vladimirov@gmail.com.
3Zornitza Terneva is with the Faculty of Telecommunications at

Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,

Bulgaria. E-mail: z.terneva@abv.bg

These calculated data values are the hypothetical power

consumption values.

The Hamming distance between D and R, also described by

H(D ⊕ R), encloses the Hamming weight model which

assumes that R = 0. The independent variable b encloses

offsets, time dependent components and noise and a is a scalar

gain between the Hamming distance and W the power

consumed (2).

W = aH(D ⊕ R) + b (2)

The last step is a comparison between the real and the

theoretical power consumption for each subkey in order to

find the one that is most likely to be used in encryption, based

on the highest correlation coefficient [3].

The variance dependencies are: σW
2 = a2σH

2 + σb
2. Тhe

correlation factor between the Hamming distance and the

measured power to assess the linear model-fitting rate is 𝜌𝑊𝐻.

The covariance between both random variables is normalized

by the product of their standard deviations. The dependences

can be observed on equation (3).

ρWH =
cov(W,H)

σWσH
=
aσH

σW
=

aσH

√a2aH
2 +σb

2
=

a√m

√ma2+4σb
2
 (3)

B. Template Radio Attack (TRA)

Many models can be inferred using a template attack. The

first step is to make a calculation about the distance between

the template probability density functions (PDFs). A template

attack will give better results if the PDFs are far one from

each other. As first order, it is proportional to the number of

commutations of the gates. The energy dissipated by a portion

of the hardware is thus measured by a Hamming distance.

However, the best way to distinguish the templates is to build

them in such a way that their dissipations are as different from

each other as can be. As the dissipation is correlated to the

Hamming distance, the best mapping is the Hamming distance

between two successive values of the keys [4].

On average, it requires a lot of preparation and retrieval of

many power traces, but the advantage of the SRA is that it is

then necessary to collect very few traces of the attacked

system to completely break the encrypted communication. It

is even possible to extract the key from only one trace. The

construction of a template consists in calculating the pair of

parameters: 𝜇𝐾𝑗
|𝑁|

, 𝛺 𝐾𝑗
|𝑁|

 - the average value of the signal, noise

distribution also known as the covariance matrix of noise.

They are calculated using statistical formulas (4), (5) and (6)

on all collected data for a given key. The final equation is (7).

μKj
|N| =

1

MKj

∑ χKj
i (t)

MKj
i=1

 (4)

ΘKj[i, :] =

(

χKj
1 (t) − μKj

|N|

⋮ ⋮ ⋮

χKj

MKj(t) − μKj
|N|

)

 (5)

ΩKj
|N| =

1

MKj
[ΘKj
T ΘKj] (6)

K∗ = argmaxKj

(

 1

√(2π)N|ΩKj
|N|
|

exp (−
1

2
(χK∗(t) −

μKj
|N|)

T

. (ΩKj
|N|)

−1

. (χK∗(t) − μKj
|N|))

)

 (7)

III. PYTHON MODEL OF THE ATTACKS

 A. Correlation Radio Attack (CRA)

Correlation Radio Analysis runs a standard correlation

attack against a data set, trying to recover the key used for the

observed AES operations. The attack works by correlating the

amplitude-modulated signal of the screaming channel with the

power consumption of the SubBytes step in the first round of

AES, using a Hamming-weight model.

Firstly we load the known key, the number of traces and the

number of points. Then we create lists to store the information

for the best guess, the PGE and the stored_cpas from maxcpa.

The following steps are for each and every one of the key

bytes:

The output of the CRA and its maximum value are creates

as empty lists.

For every guessed subkey, its value is printed. Then we

initialize arrays and variables to zero. We create a hypothesis

using the HW model. The mean of the hypothesis and the

mean of all points in the trace are performed for every subkey.

And for every one trace of the guessed subkey, we are

calculating the difference between the hypothesis and the

difference in the traces. After this we calculate the output of

the CRA and print the maximum value.

We find and print the PGE for every key byte in order to

compare them easily.

At the end we present the final results for the best achieved

guess for every key and the PGE.

B. Template Radio Attack (TRA) - Learning

The data set should have a considerable size in order to

allow the construction of an accurate model. In general, the

more data is used for template creation the less is needed to

apply the template.

Creating the template is the so-called training phase

consisting of measuring the electrical activity of a clone of the

system that will be attacked during a large number of

encryptions executed with K number of different keys on

random data sets. To perform it, the attacker must have access

to and full control over a copy of the system that will be

attacked.

This is necessary because you need to create models -

"templates" for each possible key that can be used. In practice,

it requires a lot of preparation and retrieval of many power

"traces", but the advantage of the TRA is that it is then

necessary to collect very few "traces" of the attacked system

to completely break the encrypted communication. It is

possible to extract the key from only one "trace".

In the code for every byte in the key we are using a

template S-Box from the S-Box, which is used as a lookup

table in AES. Then we sort the traces by the Hamming-weigh

(HW) model.

Make blank lists - one for each Hamming weight and fill

them up with the traces. Then we have to check if there is at

least a trace for each HW. They are switched to numpy arrays,

where we find the average values and the sum of their

differences.

The next step is to locate the points of interest, which is

done by finding the maximum sum of their differences. In

order to finish the training phase, we create the mean matrix

and the covariance matrix for each HW.

We display the points of interest and the two matrixes for

better understanding of the results.

C. Template Radio Attack (TRA) - Attacking

Template Radio Analysis applies the already prepared

template to a new system with the intention to attack the key

in a new data set. The template’s directory must be the

location of a previously created template with compatible

settings as same trace length.

The real attack starts first with creating the lists for the

scores, the best guess and the Partial Guessing Entropy (PGE)

this saves a byte which indicates the distance between real and

best guess. The closer it is to 0, the closer it is to the real

value. It can have a value of 255 if it is completely wrong

For each and every one of the bytes in the key, we are

doing the following steps:

In order to de-serialize the data stream of the point of

interest, covariance matrix and mean matrix, we use the

loads() option of the library pickle. To simplify and speed up

the calculations, the number of reports is reduced, leaving

only the points of interest.

Principal Component Analysis (PCA) is used for their

selection. This is a statistical approach allowing the

identification of patterns/trends/patterns in the data. In it, with

the help of a covariance matrix, only the most significant

values are selected. Creating these templates requires taking

measurements in about 20 hours, while collecting attack data,

with less than 1,000 traces, takes only 15 minutes. We create a

ring buffer for keeping track of the last N best guesses using a

window with start index 0 and 10 dimensions

The result of the total average values of the signal is the

covariance matrix.

For each trace, we take the key points and put them in a

new matrix. In addition, after this, each and every key is being

tested. A Hamming-weight (HW) model is made of the S-

Box. The HW is normalized and is transformed into a

probability density function. The logarithm of this one is

stored in a list together will all of the keys for a given trace.

The last list is sorted and sored into the main matrix. If a

proper key is found, we display the subkey and the number of

traces in which it was found.

The best guess for every key and the PGE are displayed at

the end.

IV. RESULTS

A. Running an attack command

In order to run the two analysis in the Linux terminal there

are a few parameters that you need to know. The most

important for the attacks are the number of traces --num-traces

(the maximum available if you pass 0), and the attack window

defined by --start-point and --end-point (or the entire trace if

you do not specify them). [5]

In order to choose the window one should plot (--plot) the

traces. Use the two shown plots to manually identify the first

round of AES, at the output of the S-Box. The attack works

better this way, because we eliminate a lot of points which

slow down the processing and add noise. The tool will first

show all the traces aligned on the same plot (careful if there

are many of them) and then the Sum of Absolute Differences

(SOAD) - which should be higher where the traces differ. [6]

$ sc-attack --plot --data-path=../traces/mbedtls_1m_home –

name =mbed_villa_500 --start-point=0 --end-point=0 --num-

traces=1000 cra
Fig. 2. Example command

B. Running a template creation command

First, we use the template set to create a template. We first

create a folder where we can store the template. Again, we

could set the window, but we do not need it. The template

attack first uses the SOAD to detect the points of interest that

is the point of the trace that "leak". They are simply the peaks

of the SOAD. One can configure how many peaks you want

with --num-pois and the minimum distance between adjacent

peaks with --poi-spacing. Note that the number of traces is

very large, so it is better to use the plot option on a smaller

subset.

$ sc-attack --data-path=../traces/tinyaes_anechoic_10m --

start-point=0 --end-point=0 --num-traces=129661 tra_create

tra_templates/example_template --num-pois=10 --poi-

spacing=1
Fig. 3. Example command

C. Numerical results

The numerical results that appear after using the attack

command consist of a table with five lines. The first two lines

show the bytes of the best guess and of the known key,

respectively. The PGE is the Partial Guessing Entropy, which

is the "distance" of our best guess from the known byte, and

therefore it is 0 when the guess is correct. Our tool ranks the

guesses, with the most likely at 0 and the least likely at 255,

and the PGE is the rank of the known key.

Fig. 4. The result given in the terminal

D. Graphic results

Fig. 5. Plot of all used traces aligned

The –plot tool of the sc-attack command will first show all

the traces aligned (see Figure. 4) on the same plot and then the

Sum of Absolute Differences (see Figure.5)(which should be

higher where the traces differ, e.g. because of the key).

Fig. 6. Plot of the Sum of Absolute Differences graph

V. CONCLUSION

In this paper we presented an approach for software

implementation of two side-channels attacks with the main

goal of recovering the AES-128 key from an unknown

system. CRA and TRA can be used in the field of security

depending on the given model and its encryptions.

Although the opportunities for those systems are a lot, the

programming realization is fairly similar and can be optimized

in order to meet the required results. In our approach we are

using the Probability Density Functions and the Hamming-

weight model to calculate the Partial Guessing Entropy. The

results are plotted in order to be easily understandable and

analyzed. Because of its simplicity and variety of built-in

functions Python3 was used as the main programming

language.

The future of the field of security systems is not clear but

can have different directions depending on our focus and

research.

ACKNOWLEDGEMENT

 The research described in this paper is partialy realized

within the Erasmus+ mobility program with the help of the

profesors at SUPELEC University in Rennes, France.

 The hardware implementation of the codes for the two

side-channel power analysis techniques used in this paper

are described in a scientific document: “Hardware

implementation and comparison of CRA and TRA when

trying to recover the AES-128 key” [7] that will also be

presented at the ICEST 2020 conference.

REFERENCES

[1] G.Camurati S.Poeplau M.Muench T.Hayes A.Francillon,

„Screaming Channels: When Electromagnetic Side Channels

Meet Radio Transceivers”, 2018;

[2] V.K.Rai B.V.Reddy S.Tripathy, “Correlation power analysis

and effective defense approach on light encryption device block

cipher”, 2019;

[3] E.Brier C.Clavier F.Olivier „Correlation Power Analysis with

a Leakage Model“, 2004

[4] M.E.Aabid S.Guilley, „Template Attacks with a Power Model“,

2007;

[5] H.Li A.T.Markettos S.Moore, „Security Evaluation Against

Electromagnetic Analysis at Design Time – CHES 2005;

[6] G.Camurati,“Screaming_channels”,https://github.com/eurecom-

s3/screaming_channels;

[7] I.Vladimirov D.Nikolova Z.Terneva, “Hardware

implementation and comparison of CRA and TRA when

trying to recover the AES-128 key”, 2020.

