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Abstract—This paper analyzes the electromagnetic
compatibility characteristics of lossless transmission lines
terminated by nonlinear loads suggested by C. Paul. The
nonlinearities of the resistive loads are of polynomial type. We
examine the mutual interaction between the two lines without
neglecting the impact of the receptor line, which enables a
more general mathematical model contrasted to the C. Paul
model. We articulate a mixed problem for a system
corresponding to 3-conductor transmission line. After that the
hyperbolic system is transformed to a diagonal form and it is
reduced to an initial value problem on the boundary. We
obtained a system of two functional equations and two neutral
equations for four unknown functions.

Keywords— lossless transmission lines, nonlinear resistive
loads, mixed problem

I. INTRODUCTION

Electromagnetic compatibility (EMC) aspects of VLSI
systems and applications are studied extensively in the liter-
ature [1]-[10]. In this paper we elaborate an EMC model of a
printed circuit board (PCB) based on 3-conductor transmis-
sion line using C. Paul results [11]. As distinct from the
considerations in [11], we propose a broader treatment to
find a solution to the system describing the 3-conductor
transmission line problem; the transmission lines are
terminated by nonlinear resistive loads as distinct to our
previous paper [12] where we study linear loads.

In particular, we formulate a hyperbolic system modeling
the behavior of 3-conductor transmission line terminated by
nonlinear resistive loads (Fig.1). Then we transform it to a
diagonal form using the method from [13]; we transform also
the initial and boundary conditions. The reduced system
consists of two functional equations and two equations of
neutral type [14] on the boundary. The mixed problem for
the diagonal system is reduced to an initial problem on the
boundary.

The ground symbol in Fig. 1 is a denotation for the line
voltages reference of the conductor. It is a PCB land in our
case, but it may also be an endless ground plane, an overall
shield, a wire, etc. The additional two conductors are PCB
lands, but they might be of a diverse type. It is presumed that
the line behaves as a uniform line (cf. [9], [10]). The line is
supposed to be lossless in the sense that we have perfect
conductors. The adjacent environment is also presumed to be
lossless — it might be inhomogeneous similarly to the case of
a PCB.

The upper circuit in Fig. 1 is referred to as generator
circuit where the conductor with respect to the reference
conductor is operated by a source having open-circuit
voltage Us(f), source resistance Rs ; it is terminated in a
resistive load R;. The bottom circuit conductor with respect
to the reference conductor circuit is referred to as “receptor”.
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It is ended with a resistive load Ryg at the near end and with
a resistive load Rrz at the far end. The current and voltage of
the generator circuit create both magnetic and electric fields
and they interrelate with the receptor circuit creating
crosstalk voltages at the circuit terminals so the generator
circuit perturbates the receptor circuit.

The reference conductor voltages u (x,f) (k=1,2) and the
currents of each circuit i (x,f) (k=1,2) are dependent on
position x and time ¢.
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Fig. 1. Schematic of the three-conductor transmission line.

In agreement with the TEM mode of propagation (cf. [1]-
[10]) we get the following mixed problem (initial-boundary
value) for the hyperbolic system describing the behavior of
the 3-conductor transmission line terminated by nonlinear
resistive loads

ou g (x,1) dig(x,1) di p(x,1)
+Lg =g Zr5HD
ox ot ot
8zG(x,t)+(CG +Cm)8uG(x,t) e du p(x,1)
dx ot ot )
ou p(x,t) dig (x,1) dig(x,1)
+Lg ==Ly ——
ox ot ot
Qig(x,1) dup(x,t)  dug(x,t)
ax T CRTCW)TH =6,

with these boundary conditions

uG(0,0)=U (1)~ Ryig(0.0)

] } at the near end
up(0,t) =—Rygig(0,1)

C, wzic(/\,t)—fl(uc(/\sf)) v
] (tA ) at the far end
CzuRd—t’:l‘R(A:t)_fZ(uR(A’t))
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where ¢ > 0 and the following initial conditions (at ¢ = 0)
uG(x90)=uGO(x)s UR(X,O)=URO(X), XE[O,A] (3)
iG(x50)=iGO(x)’ iR (xso) =iR0(x)9 XE[O,A]

In (2) /i and f; are polynomials. Functions 7= f (u),
i»=f>(u) are the IV characteristics of the nonlinear resistive
elements; the nonlinearities are of polynomial type, that is

f@)=3 gt (1=12).
k=1

The above system (1) is rewritten in the form

dug(x,1) e Ou g (x,1) N dig(x,1) _
ot ot 0x
du g (x,1) N dip(x,t)
"ot ot ox
dig(x,1) ‘L dip(x,1) N du (x,t) _
ot ot ox
) dig(x,1) ‘L, 0ip(x,1) N du p (x,1) _
ot ot ox
and the denotations are introduce

(Cs+C,) 0

-C M+(CR+Cm) 0

“4)

L; 0

0

w (X, ) =ug(x,t);  uy(x,t) =ug(x,t);

Lh(x,t)=ig(x,1); i (x,0) =ig(x,1)
C,=C;+C,, C,=Cy=-C,, Cy) =Cp+C,,
Lyy=Lg, Liy=Ly =Ly, Ly=Lg

In the new denotations we reach the following boundary
conditions

u(0,1) =U (1) — Rgiy (0,1)

. } at the near end
Uyg =u,(0,t) ==Ryzi (0,1)

du, (A1) .
CO%=11(AJ)—fl(ul(A,t)) ©)
dus (At) at the far end
u s .
Co—= == =0 (A= fr(ua (A1)
where ¢> 0 and initial conditions (at # = 0)
ul(xao):ulo(x)a uz(xao):uzo(x)a )CE[O,A] (6)

i1(x,0)=10,y(x), iy(x,0)=1iy(x), xe[0,A]

II. SOLUTION TO THE
3-CONDUCTOR TRANSMISSION LINE SYSTEM OF EQUATIONS

Finding a solution of the mixed problem for the
hyperbolic system describing the 3-conductor transmission
line system (with the transmission lines terminated by
nonlinear resistive loads), means finding the currents and
voltages along the lines. Here, the hyperbolic system is
transformed to a diagonal form. Next, we reduce the mixed
problem for the hyperbolic system to an initial value problem
on the boundary. The obtained equations are of neutral type
[14], which will be solved in a next paper.

A. Hyperbolic System Transformation
In a matrix form (4) becomes

Aa_U+Ma_U:()

7
ot ox @

where we used the following denotations for the matrices:

¢, C, 0 0 0010
4G Ca 0 0|00 0 1
0 0 L, L, 1 000
0 0 L, L, 01 00 ®)

du, /ot du, / dx

oU |0u,/dt| QU _|du,/ox

ot | 9i, /ot | ox | 9i,/ox

di, /0t di, / ox

Ac=C 0y _C122 =(Cs+C,)(Cp +Cm)_cr?1 =
=CuCp+CyC, +CpC, >0

Since

we have to assume the following:

Assumption (L). The matrix L is non-singular that is its
determinant is different from zero:

A =LgL, _Lfn =L,Ly _sz #0.
This implies that |A|=ACAL #0 and therefore 47! does
exist.

We denote by B the following matrix: B = A~'M and we
obtain

ot ox
U(x,t)=H Z(x,t)
I (k = 1,2,3,4) — new unknown

0 ©)

Let us substitute
T
Z :(11912’13914) ;
functions. We obtain
% 0Z(x,1) v BH 0Z(x,1) -0
ot ox
and multiply by H! from the left to obtain
BZ(Jtc, 1) - BH 0Z(x,t) _
X

H needs to be found so that H'BH = B“", where

in (9) where

0.

0
can 0
B =
0

o o o >
o o > o
o> o o
o~

and A (k=1,2,3,4) are the eigen values of B, hence the roots
of

|B—Al|=
-2 0 Cp/Ar —CpylAc
| o -4 —GulAc CylAc|_ 10)
Ly/A, —LnlA, -2 0
=Ly /AL Ly /AL 0 -4

_ ACAL/7~4 —(L;,Cyy +2L,Cyy +L22C22)/12 +1 -0
AcA,




where I — identity matrix, |B — Al] — determinant of B — Al
We suppose the following assumption:

Assumption (D). The discriminant D of the above bi-
quadratic equation in (10) is positive:
2
D =(LyCyy +2L,Cpy + Ly, Cpp) =
—4(C11C22 -C )(Lanz - I ) >0

We find characteristic roots from (10)

(LG +2L,Cy + Ly, Coy )
2(C11C22 _Clzz)(l'uLzz _L%z)
2
(L11Ciy +2L1,Cp + L5y Coy ) =
‘4(C11C22 - C122)(L11L22 ‘sz)

2(C11C22 —C122 )(Lanz _L%Z)

(LG +20,Cry +1,Cry)
2(011022 —sz)(lqlez —lqzz)
(L1 Cpy +2L1,C1 + Ly Cry ) -
—4(C11C22 —Clzz)(Lanz _L%Z)
2(C11C22 _CIZZ)(LIILZZ _L%Z)

(L,Cyy +2L1,Cy + Ly, Csy)
2(Cnczz _Clzz)(Lanz _L%z)

(LIICII + 2L12C12 +L22C22 )2 -
—4(C11C22 - C122)(L11L22 _sz)
2(GyCoy = Ch ) (L Ly — 13,

’ (L11Cyy +2L,Cy + Ly Cyy)

2(C11C22 —Clzz)(Lanz _L122)
(L1Cyy +2L,Cpy + Ly, Cyy )2 -
—4(C11C22 —sz)(lqlez —lqzz)
2(C11C22 —Clzz)(Lanz _L%Z)

For simplicity, we the find the eigen-vectors of

_ T
(B l_ﬂkI)H(k)ZO; ty =1/ s HO = (84,600 8650.80)

(instead of (B— A4, 1)H™ =0) because
0 0 L, Lp
0 0 L, Ly
¢, G, 0 0
C, C, 0 O
has a simpler form than B.

B'=

With the above roots we obtain 4 eigen-vectors H ®
(~=1,2,3,4).

(B-A1)H" =0
(B-4R1)HY =0

(B-4LI)H? =0

(11
(B=MI)H® =0

denoted by H® = (‘flk"fzk"§3k9§4k )T (k=1,2,3,4).
To solve (11) we have to assume:

L12C11 +L22C12 = Lm (CG + Cm)_ LRCm #0
L,Cpy+ L, Cpy =L, (Cy +Cm)_LGCm #0.

Note that the characteristic roots of (10) satisfy the
following inequalities 4, >4, >0; 4, =—4; 4, =—4,.

We obtain the following eigen-vectors
T
HY = (pq,1,7)
T
H(Z) = (pzsqz’l’ 7/2)
3 _ T
HY =(-pi.—q,1.71)

H(4) = (_st_qz’la 7/2)T

Then the transformation matrix becomes

b P —P — P
_ 9 492 —q91 —49
1 1 1 1

nh 7 n Iz
where
L, + /113 ALCy

D = =X (L +Low)
A (LinCyy + Ly Gy )
Ly, =AM, Cy
q; = =4 (L + Ly, )
A (LiyCyy + LGy )
_ 1_/11{2 (LG + L, Cpy)
Ve =

A (LipCiy + Ly Ciy)
(k=12)
Since |H|=4JA, I Ac (7, - %) #0 for the inverse matrix

we obtain:
DAL/ A =oAL A -
o = 1 —qAL/Ae AL A ]

2(r—n) —GNNAL A PaJAL A 7 -1
GNAL T Ac —piAL A = ]

B. Boundary Conditions with Respect to the New Variables
Introduce new variables U= HZ and Z= H'U , where

. NT T
U:(“lauzallalz) > Z:(Ils[2s13»[4)
Then

u(x,0) = py [ (x,0) + pydy (x,0) — py I3 (x,0) = pyl 4 (x,1)
uy (x,0) = qy I, (x,0) + go 1, (x,0) = q I3 (x, 1) — @ 4 (X, 1)



LH(x,)=n1L(x,0)+7, L(x,0)+ 1l (x,0)+71,(x,1)

and

GNAc /AL (x,1) =
1
—————| —PoJAC T Ay (x, 1)+

2 —
(2 =7) 70, (x4, ) — iy (x, 1)

—qinAc T AL u(x, 1)+
1
| oA/ Apuy (x,0) -

L(x,t)=
2(%,-n) i (50 + iy ()

-\ Ac /AL u(x, )+
; +PoAC T A Uy (x,0) +

2 _
K] R

GiAC /AL uy(x,0)—
1
=) —PiAC /Ay uy(x,0)—

(7. =7) i (x5, 0) iy (3, 1)

I (x,0)=

L;(x,t) =

14()(,[) =

So, the mixed problem (1)-(4) is transformed to find a
solution of the diagonal system:

o, (x,1)
o
ol (x,1)
ox

ol (x,1) N
ot

o (x,1)
ot

oI, (x,1) _0, oL, (x,1) A,
ox ot

oL (x,t) —o, 814(x,t)_/12
ox ot

4
A

0,

0

with the following initial conditions rewritten in the new

variables
GaNAc T Ap uy(x)—
1
EYEAY ~PaNAC T Apung () + | =11 (x)

(=) +75i10 (X) =i (X)

—qiNAC T Ap () +
1
+PINAC T ALy (x) = | = 1y ()

(v —
(72-7) —Wij (X) +ip(x)

1, (x,0)=

1, (x,0)=

(13)

GAc /AL wmo(x)+
1
207 -7) +PyAC T ALty (X) + | = T3(x)

+ai1 (X —ip0 (X)

fh\jAc IAL uyg(x)—
1
! \/AC TAL Uy (x) = [ =145 (x)

1,(x,0) = ——
2(;/2 _;/1) _j/ll'lo(x)+l.20(x)

and boundary conditions rewritten in the new variables (at ¢
>0):

(12)

D 10,0+ py1,(0,0)— pi15(0,6) — py1,(0,0) =
=Ug(t)— Ry [1,(0,0) +1,(0,) + I5(0,1) + 1,(0,)]

g1 [,(0,0)+g,1,(0,8) — ¢, 15(0,1) — g, 14(0,8) =
=—Ryg [71 L(0,0)+ 7y, L,(0,0)+y5;(0,0)+ 72[4(0,0]
(14)

C d(p LA+ P L (A= p (A D= prLy(AL)
| =
dt
:II(A7I)+[2(AJI)+[3(A7t)+[4(A7t)_
_f (Pl Il(Aaf)+P212(AJ)—j
T enL (A= pyLy (AL
C d(q (A +q 1L (M) =g (A~ g, 14 (A1)
2 =
dt
=N LAD+ 7, LAD+7LGAO+ 1A -
_f (‘]1 ]1(/\,1‘)""]2[2(/\,0_]
(A - g, 1, (A1)

C. Derivation of a Neutral System Equivalent to the Mixed
Problem

Proceeding as in [13] we find the characteristics of the

system (12) which forms 4 families of curves

dx dx dx dx
dt A dt & dt A dt & (13)

Through each point (x,7)e IT ={(x,7)e [0,A]x[0,T]}

there are 4 characteristics: Ci, C> with positive slopes and Cs,
Cs, with negative slopes. A characteristic Cy (k=1,2) through

a point (0,7,) intersects the boundary x=A at some point
(Af, +T,) where T; can be found by integration of

dx . . .
7 A, Since the characteristic C; is x— A, =const, then
t

the straight line through (0,7,) is

~ X ~
A

Setting x=A and ¢ =7, + T, we obtain
A=A ((+T)=-Xi = T, =A/4.
Similarly, the characteristic C,(p =3,4) is x+4,¢ = const
(with 4, =-A4,4, =—4, ) and the straight line through a
point (A,fp) is x+lpt=A+ﬂpfp . It intersects x = 0 at a

point (O,fp +T p) . Therefore
A, (F,+T,)=A+ A0, = T,=A/2,(p=34

i.e. T3:T1, T4:T2.

Introduce directional derivatives



9,0d_9 .9

=2,°24_ 9.2 % (k=12
T wm T )
9 9d 9 .9
_2,°28_9 2% (k=34
T v T )

Then system (12) can be written in the form:

DI, =0 (k=1,2,3,4) (16)

Integrating the equations from (16) for k=1,2 along the
characteristic C; from (0,7) to (A,t+ Tx) (where the
integration is a line integral along C;) we obtain

Li(At+T)=1,(0,6) (2 0)

Similarly, the equation from (16) for /=3,4 along Cj from
(0, t+ Ty) to (A, ) we get

LA ) =1,(0,:+T;) (¢ 20)
From (14) the initial conditions imply:
(py+Rg)1,(0,0)+(p, + R ), (0,0) =
=Us () +(py = Rs ) (0,0 +(py = Ry ) 1,,(0,1)
a7

(@ + Ry 71) 1,(0,0)+ (g + Ry 72 ) 1,(0,0) =
=(q = Rye 1) 15(0,0)+ (g = Rz 72 ) 1,(0,0)

while boundary conditions imply:

dl, (A1) dI(A0)
+ =
P d P d
dl(At)  dlL(AD)

= —+ —_

P di P2 di
_II(A,t)+12(A,t)+13(A,t)+l4(A,t) +

Cl
N A (o LMD+ prly (A1) = I3 (A0) = pyLy (A1)
Cl

E

(18)

dL(A0)  dl(A0)
+ =
9 d ) d
AL (A dL(A)
= + —
q di q, d
nLAD+Y LD+ RLAD+11,(A1) +
G
+f2(41 LA D)+ g1 (A1) =g 15 (A1) — 14 (A, 1))
G

Solving (17) with respect to /i «(0, #) and I (0, 7) we
obtain

1,(0,0) = Ay () + A, 15 (0,0) + Ay, 1,(0,0)
L,(0,0) = Ay (1) + Ay, 1;(0,0) + Ay 1, (0,1)

where the coefficients A, 411, A2, A2, A21, A2 are as
follows:

(92 + Ry 2)Us ()

A1) =
A,
4 = 2(pa¥a Ry _‘IzRS),
11 — s
A,
4 = P19 = Pdi (4, + 1 ) Ry
12 = +
A,
+(P172 + P20 ) Ry + (71 = 72) Ry Ry
A,
_ (@ + Ry n)Us @)
Ay (1) =— ;
A,
P12 P2 4 (4 + 0 ) R
b1 = A -
12
(7t pan) Rug + (% = %) Ry Ry |
A,
4o = —2p 7 +2q,Rs
=

AIZ

I (A
Solving (18) with respect to d 3; 1) and dl, (A1) we

dt
obtain

d13(A7t) _ dII(Ast) +
dt dt

+p27/l_q2 II(A,t)+p27/2_qz 12(A,t)+
A34 0 A34 0

PN —49 PV~
+—=——=L(AD)+—=——=[, (A, )+
A34C A34C

+ 22 H (o LA+ oLy (A1) — p s (A — pydy (A1) —
A34C

- o (g LA + g, 1, (A1) — g L5 (A1) — g, 1, (A 1))
A3,Gy

dl(A0) _dL (AL

dt dt
Pita P ta
————L(A)-—"——1L(A0)-
A3, G A5G

+ +
_Pphta 13(A,t)—p1y2 il LA
A34Cy 3100

+ d L@ LN+ gL, (A1) — g3 (A1) —qa 1, (A1) +
A3, Gy

+—I f (o LA+ poly (M) = pIs (A )= poly (AsE))
A34C0

Considering the relations
LA =1(0,t=T)),1,(A, 1) = 1,(0, = T)
Li(At—=T3) = 15(0,8),1,(A,t = T,) = 1,(0,1)



and designating the unknown functions by
1,(0,0) =1, (1)
5,(0,0) = 1,(1)
;) = I;(A,0)

Li(O)=1,(A1)
and taking into account 7, =T7;,7, =7, , we reach the
system
1,(0) = Ay () + A (1 =Ty) + ALy (1 = T,) =U, (19)

L (t) = Ayg(t) + Ay L5 (t = T)) + Ay 1, (t = T,) =U, (20)

diy(0) _dh(=T))
dt dt

PN~ 49
$ PN g o)
A3, Cy

) 2Y P
A3, Cy

+p27/1 —4q ]3(t)+

A34Cy 1)

P2V, 4,
+ 2202 "% )4
A3, Cy

LD I(Plll(t—ﬂ)‘*'l?z[z(f—Tz)—]_
A3 Gy =i L3(0)— py 14 (0)

__ P (qlll(f_n)+Q212(f—T2)—]=
A3, Gy ol (0- g, 1,0 -
EU3

dly(@) _dl(t-T))
dt dt

Pt 4a
SPAT g -
A34C

+
_pl}/Z q [2(I_T2)_
A34(’10

_pl7/l +QI 13(t)—

A3, Gy 22)

JL2VERK
PR A )4
A34C
LD fz{fh Il(Aat)+‘1212(AJ)_j+
A Co " T\~ (A D) — g4 (AL D)

9 (pl Il(Aat)+p212(A:t)_\J

1
A3,Cy =pil3 (A1) = pod (A1)
= U4

To obtain the initial conditions on the intervals [-73,0],
[-T2,0], we could shift the initial functions

ty0(X), 0 (X),719(X),i50 (X)

from the interval [0,A] along the characteristics to intervals
[-71,0], [-T2,0].

The resultant functions after the above transformation on
the boundary we denote by

L0(0), 10 (1), L3 (2), 14 (2)
If functions wuq(x),uy0(X),i0(x),i(x) are periodic,
functions 1,4(#), 150(t), 150(?),140(¢) are also periodic.

III. CONCLUSION

We have reduced the mixed problem for 3-conductor
transmission line to an initial value problem on the boundary
for the system (19)-(22). It consists of two functional
equations (19) and (20) and two neutral equations (21) and
(22) with two different delays for the unknown functions /i,
b, I3, I+. By applying a fixed-point method this problem can
be solved at the given initial conditions, which will be done
in a next paper.
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