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Abstract— Here we present an abridged investigation on 
the electromagnetic compatibility aspects of three lossless 
transmission lines terminated by linear loads introduced by C. 
Paul. Taking into account the mutual interaction between two 
lines we do not neglect the influence of the receptor line i.e. we 
do not apply the weak-coupling approximation. This leads to a 
more general mathematical model than the model of C. Paul. 
We formulate a mixed problem for the hyperbolic system 
describing the three-conductor transmission line. It is proved 
that the mixed problem is equivalent to an initial value 
problem for a functional system on the boundary of hyperbolic 
system’s domain. The unknown functions in this system are the 
lines’ voltages and currents. The obtained system of functional 
equations can be solved by a fixed-point method that enables 
us to find an approximated but explicit solution. Usually such 
problems are treated by numerical methods or Laplace 
transformation method, which are applicable to linear 
problems only. 

Keywords— electromagnetic compatibility, 3-conductor 
transmission line, linear hyperbolic system, initial-boundary 
(mixed) problem for hyperbolic system, fixed point method

I. INTRODUCTION

Many studies have been devoted to the investigation of 
VLSI systems and their applications (cf. [1]-[8]). Here we 
consider an electromagnetic compatibility model of a three-
conductor transmission line using the results of C. Paul [9]. 
Unlike [9], we propose a general approach to solve the 
problem in question and show that the weak coupling 
assumptions introduced in [9] (cf. also [10]) turns out to be a 
particular case of our more general treatment.

Following the technique from [11]-[13] (applied also to 
other problems, e.g. [14], [15]) we obtain a general solution 
of the system modelling pairwise interacting 3-conductor 
transmission line introduced in [9]. We proceed from the 3-
conductor transmission line circuit shown in Fig. 1 (cf. [9]). 
The ground symbol in Fig. 1 denotes the reference conductor 
for the line voltages. In our case, this is a PCB land although 
it may also be an infinite ground plane, a wire, an overall 
shield, etc. The other two conductors are also PCB lands 
though in general they may be of various type too. The line is 
assumed to be an uniform and lossless line (cf. [7], [8]).

The upper circuit is referred to as a generator circuit; it is 
driven by a voltage source with open-circuit voltage US (t)
and source resistance RS; it is terminated by a resistive load 
RL .The lower circuit is referred to as a receptor circuit; it is 
terminated by a resistive load RNE at the near end and by a 
resistive load RFE at the far end. Electric and magnetic fields, 
arisen by the voltage and current of the generator circuit, 

interact with the receptor circuit producing crosstalk voltages
at the terminals of the receptor circuit.

Fig. 1. Circuit of the 3-conductor transmission line. 

Our objective is to find a solution for these crosstalk 
voltages proceeding from a more general system compared 
to the one in [9], that is the hyperbolic system (1) obtained in 
accordance to the TEM mode of propagation (cf. [1]-[8]). 
The voltages with respect to the reference conductor uk (x, t)
(k = 1; 2) and the currents of each circuit ik (x, t) (k = 1, 2) are 
functions of position x and time t. 
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Before continuing we point out that in our investigation,
we do not apply the weak coupling assumption as distinct 
from [9] where weak coupling assumption is applied; this
means that the right-hand side of (1) is not neglected. Hence, 
our method enables us consider the more general case of (1).

 Introduce denotations
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We are able to formulate the following mixed problem: 
to find a solution of the system
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where
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II. TRANSFORMATION OF THE HYPERBOLIC SYSTEM AND 
RESULTS

In a matrix form the above system (4) is
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therefore 1A does exist and we have
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Rewrite (6) in a matrix form
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t
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Substitute ( , ) ( , )U x t H Z x t in (7):  
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x
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H

and multiplying by 1H we obtain
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x
txZ
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We have to find H such that H–1BH = Bcan, where Bcan is a 
diagonal matrix whose elements are eigen-values

( 1, 2,3, 4)k k of B, i.e. the roots of the characteristic
equation  

4 2
11 11 12 12 22 222 1

0C L

C L

B I

L C L C L C

Under Assumption (D): 
2

11 11 12 12 22 22

2 2
11 22 12 11 22 12

2

4 0
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One can obtain characteristic roots and then we find 
corresponding eigenvector 

( )
1 2 3 4, , , ; ( 1, 2,3, 4)Tk
k k k kH k .
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    (k=1,2). 

The transformation matrix is

1 2 1 2

1 2 1 2

1 2 1 2

1 1 1 1

p p p p
q q q q

H

2
2 14 / 0L CH . 

III. DERIVATION OF THE BOUNDARY CONDITIONS WITH
RESPECT TO THE NEW VARIABLES

The transformation formulas between

1 2 1 2, , , TU u u i i and 1 2 3 4, , , TZ I I I I are

1 1 1 2 2 1 3 2 4( , ) ( , ) ( , ) ( , ) ( , )u x t p I x t p I x t p I x t p I x t

2 1 1 2 2 1 3 2 4( , ) ( , ) ( , ) ( , ) ( , )u x t q I x t q I x t q I x t q I x t

1 1 2 3 4( , ) ( , ) ( , ) ( , ) ( , )i x t I x t I x t I x t I x t

2 1 1 2 2 1 3 2 4( , ) ( , ) ( , ) ( , ) ( , )i x t I x t I x t I x t I x t

With respect to the new variables the mixed problem (1)-
(3) becomes as follows: to find a solution of the system
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0, 0,

( , ) ( , ) ( , ) ( , )
0, 0

I x t I x t I x t I x t
t x t x

I x t I x t I x t I x t
t x t x

with initial conditions and boundary conditions in the new 
variables:

1 10 2 20 3 30 4 40( ,0) ( ) , ( ,0) ( ) , ( ,0) ( ) , ( ,0) ( )I x I x I x I x I x I x I x I x

To obtain the boundary conditions 
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with respect to the new variables we use the transformation 
formulas and obtain

1 1 2 2 1 3 2 4

1 2 3 4

1 1 2 2 1 3 2 4

1 1 2 2 1 3 2 4

1 1 2 2 1 3 2 4

(0, ) (0, ) (0, ) (0, )
( ) (0, ) (0, ) (0, ) (0, )

(0, ) (0, ) (0, ) (0, )
(0, ) (0, ) (0, ) (0, )

( , ) ( , ) ( , ) (

S S

NE

p I t p I t p I t p I t

U t R I t I t I t I t

q I t q I t q I t q I t

R I t I t I t I t

p I t p I t p I t p I

1 2 3 4

1 1 2 2 1 3 2 4

1 1 2 2 1 3 2 4

, )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )FE
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Through each point ( , ) ( , ) [0, ] [0, ]x t x t T
there are 4 characteristics: C1, C2 with positive slopes and C3,
C4 with negative slopes. These are the solutions of

1 2 1 2, , ,dx dx dx dx
dt dt dt dt

Integrating the following equations 
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( , ) (0, ) 0k k kI t I t T t . 

Then the boundary conditions become: 
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Since
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0S S
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2 1
34
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0L L
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1 10 11 3 12 4

2 20 21 3 22 4

3 11 1 12 2

4 21 1 22 2

(0, ) ( ) (0, ) (0, )
(0, ) ( ) (0, ) (0, )
( , ) ( , ) ( , )
( , ) ( , ) ( , )
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. 

Taking into account ( , ) (0, ), ( 3, 4)k k kI t T I t k , 

( , ) (0, ) ( 1, 2)k k kI t I t T k we can rewrite the 
above equations in the following way:

  1 10 11 3 3 12 4 4(0, ) ( ) ( , ) ( , )I t A t A I t T A I t T

2 20 21 3 3 22 4 4(0, ) ( ) ( , ) ( , )I t A t A I t T A I t T

3 11 1 1 12 2 2( , ) (0, ) (0, )I t B I t T B I t T

4 21 1 1 22 2 2( , ) (0, ) (0, )I t B I t T B I t T

Denoting the unknown functions by

1 1 2 2 3 3 4 4(0, ) ( ), (0, ) ( ), ( ) ( , ), ( ) ( , )I t I t I t I t I t I t I t I t

and taking into account 1 3 2 4,T T T T we obtain the 
following system:
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1 10 11 3 1 12 4 2

2 20 21 3 1 22 4 2

3 11 1 1 12 2 2

4 21 1 1 22 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

I t A t A I t T A I t T
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The initial conditions on the intervals 1 2[ ,0],[ ,0]T T
can be obtained as in [12]. 

If 10 20 10 20( ), ( ), ( ), ( )u x u x i x i x are periodic functions 
then 10 20 30 40( ), ( ), ( ), ( )I t I t I t I t are periodic functions too. 

Now we formulate the main problem: to find a T0-
periodic solution of:

1 10 11 3 1 12 4 2
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3 11 1 1 12 2 2

4 21 1 1 22 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

I t A t A I t T A I t T
I t A t A I t T A I t T
I t B I t T B I t T
I t B I t T B I t T

where 

1 10 1 2 20 2

3 30 1 4 40 2

( ) ( ), [ ,0], ( ) ( ), [ ,0],
( ) ( ), [ ,0], ( ) ( ), [ ,0]

I t I t t T I t I t t T
I t I t t T I t I t t T

To prove the main theorem we use the technique of fixed 
point theory in uniform spaces (cf. [13]) and define suitable 
operators B = (B1, B2, B3, B4) acting on specific function 
spaces.

The main result is:

Theorem 1. Let the following conditions be fulfilled:

0 0

0

1 1
10 30 1 20 40 2

0

(.), (.) [ ,0], (.) , (.) [ ,0]

(.) [0, ), max ( ) : [0, ]
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1
1
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1
1

min ,

NE
NE

S S

L L R
q R

U UL C L C
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I I

Then there exists a unique T0-periodic solution of (9).
The proof is based on the fixed point technique.

IV. VALIDATION OF RESULTS

Since our goal is to find 

2 2(0, ); ( , )NE FEU u t U u t
we have:

2 1 1 2 2 1 3 2 4

1 1 2 2 1 3 1 2 4 2

(0, ) (0, ) (0, ) (0, ) (0, )
( ) ( ) ( ) ( )

u t q I t q I t q I t q I t
q I t q I t q I t T q I t T

2 1 1 2 2 1 3 2 4
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( , ) ( , ) ( , ) ( , ) (0, )
( ) ( ) ( ) ( )

u t q I t q I t q I t q I t
q I t T q I t T q I t q I t

where 1 2 3 4( ), ( ), ( ), ( )( )I t I t I t I t is the solution obtained in 
Theorem 1.

We have to check the conditions of our Theorem 1
referring to the data from [9]: 

L11 = LG = LR = L22 = 0.8529 H/m;Lm = 0.3725 H/m;

L12 = L21 = Lm;C11 = C22 = 46:762 pF/m;

C12 = C21 = – Cm = – 18.036 pF/m;

L12 C11 + L22 C12 = Lm (CG + Cm) – LR Cm = 0.3725 × 
46.762 – 

L12 C22 + L11 C12 = Lm (CR + Cm) – LG Cm = 0.3725 × 
46.762 – 

C = C11 C22 – C2
12 = (CG + Cm) (CR + Cm) – C2

m =
= 46.7622 – (–18.036)2 1861.3874 > 0;

L = LGLR – L2
m = L11L22 – L2

12 = 0.85292 – 0.37252   
0.5887 > 0;

1 0.0321157 0.1792 , 2 0.0284 0.1686 , 

L22 + 1 2 L C11 = 0.8529 + 0.1792 × 0.1686 × 0.5887 × 
× 16.762 1.6846 ;

22 11 55.7546L L CC L  ; 

1 2
12

12 11 22 12

22 1 2 11
22 11

1 2

/

0.427 24.051 3.5014 19.6 ;

( )

(( ) )

L C S FE

L
L L C NE S

S NE NE S

D R R
L C L C

L C
C L R R

R R R R

34
12 11 22 12

22 11
1 2

22 1 2 11
12 11 22 12

1 2

/

0.427 24.051
;

3.5014 19.6

( )

( )

L C FE

L L C NE

L

NE

NE

D R R
L C L C

C L R

L CL C L C R

R R
R R
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2
1 11 11 12 12

1 2
1 12 11 22 12

1 ( )
0.987979;

( )
L C L C

L C L C

2
2 11 11 12 12

2 2
2 12 11 22 12

1 ( )
1.038

( )
L C L C

L C L C   

The inequalities from the main theorem are:

1 12 22 1 1

12

10 20

| ( ) |

| 0.0667 0.98798(0.1528 ) |
0.427 (24.051 3.5014) 19.6
min{ , }

NE
S

NE
S

S NE S

L L R
U

R
U

R R R
I I

  

2 12 22 2 2

12

10 20

| ( ) |

| 0.0628 1.038(0.1437 ) |
0.427 (24.051 3.5014) 19.6
min{ , }

NE
S

NE
S

S NE S

L L R
U

R
U

R R R
I I

 . 

In what follows we verify how the same data satisfy the 
conditions generated by the particular case under weak 
coupling assumptions. Indeed, the main system becomes

( , ) ( , )
( ) 0

( , ) ( , ) ( , )
( ) 0

( , ) ( , )
0

( , ) ( , ) ( , )
0

G G
G m

G R R
m R m

G G
G

G R R
m R

u x t i x t
C C

t x
u x t u x t i x t

C C C
t t x

i x t u x t
L

t x
i x t i x t u x t

L L
t t x

Since | | 0C LA and then the inverse one of A does 
exist and then we can find the eigenvectors 

( )
1 2 3 4( , , , ) ; ( 1, 2,3, 4)k T
k k k kH k

of 1 ( )( ) 0; 1/k
k k kB I H . 

and therefore, we have

11 11 22 22 11
1 1

11 12 12 22 11

11 11 22 22 11
3

11 12 12 22 11

( , ) ( , )

( , );

L C L C L
u x t I x t

L C L C C

L C L C L
I x t

L C L C C

12 11 22 12 12 22
2 1 2

11 12 12 22 11 22

12 11 22 12 12 22
3 4

11 12 12 22 11 22

( , ) ( , ) ( , )

( , ) ( , );

L C L C L L
u x t I x t I x t

L C L C C C

L C L C L L
I x t I x t

L C L C C C

11 11 22 22 11 11 22 22
1 1 3

11 12 12 22 11 12 12 22

( , ) ( , ) ( , );
L C L C L C L C

i x t I x t I x t
L C L C L C L C

2 1 2 3 4( , ) ( , ) ( , ) .( , ) ( , )i x t I x t I x t I x t I x t

If we take the specific parameters again from [9]

L11 = LG = LR = L22 = 0.8529 H/m;

C11 = CG + Cm = CR + Cm = C22 = 46.762 pF/m

it is obvious that L11 C11 – L22 C22 = 0. This implies 
1( , ) ( , ) 0Gu x t u x t . The contradiction obtained shows the 

advantages of our method.

CONCLUSION 

In this paper we extend the general method from [12] to 
investigate a 3-conductor transmission line terminated by 
linear loads. We reduce the mixed problem for the 
hyperbolic system describing TEM propagation along the 
lines to functional system on the boundary. The system of 
functional equations can be solved by a fixed point method. 
This means that solution can be obtained by successive 
approximations in an explicit form beginning with simple 
initial approximation. Usually such problems are treated by 
numerical methods or Laplace transformation method but 
our approach is also applicable to nonlinear boundary 
conditions. We point out that previous results contain an 
existence of harmonic solutions. Here we prove existence-
uniqueness of more general periodic solution. We have 
shown the advantages of our method on the examples arising 
from the investigations of cross-talks. 
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