МОДЕЛИРАНЕ И СИМУЛАЦИОННО ИЗСЛЕДВАНЕ НА ВЯТЪРНА ТУРБИНА С ВЕРТИКАЛНА ОС НА ВЪРТЕНЕ - ТИП H-ROTOR ЧАСТ 2 СИМУЛАЦИОННО ИЗСЛЕДВАНЕ

Янко СЛАВЧЕВ¹, Калин АДЪРСКИ², Юлиян ГЕНОВ²

ya slavchev@abv.bg, adarsky@yahoo.com, j genov@mail.bg

¹⁾ катедра ИЛПТСТ, МФ, ²⁾ катедра Механика, ТФ ТУ – София, 1756, БЪЛГАРИЯ

В настоящата разработка се извършва 3-D моделиране и симулационно изследване (флуидни симулации CFD чрез метода на крайните елементи) на вятърна турбина с вертикална ос на въртене (VAWT mun H-rotor). Изследвани са различни позиции на турбината и ъгли на завъртане на лопатките (pitch angle). Отчетени са измененията на флуидното поле (скорост и налягане) около лопатките и са получени данни за въртящия момент и силовите въздействия върху вятърната турбина.

Ключови думи: вятърна турбина с вертикална ос (VAWT), крайни елементи, CFD, аеродинамични канали

1. Въведение

Цел настоящото на изследване e изграждането на пространствен числен модел на аеродинамичното взаимодействие, позволяващ при различни скорости на вятъра, положения на ротора на турбината и ъгли на завъртане на лопатките (pitch angles), да се получат разпределенията на скоростта и налягането и респективно действащите сили и моменти. Въз основа на резултатите от CFD симулациите да се идентифицират параметрите на налитичния модел, разгледан в първата част [12].

В [9] се изследват ескпериментално характеристиките на няколко типа турбини, проследяват ефектите като ce OT възникващата турбуленция на флуида около турбините при отлелните позиции Модел на аеродинамичното лопатките. взаимодействие и варианти на управлението на ъгъла на атака се изследват в [8].

В [11,13,14,25] се идентифицират характеристиките на VAWT посредством числено моделиране с CFD (Computer Fluid Dynamics) симулации.

2. Характеристики на моделът

Разглеждания модел турбина е тип Darrieus H-rotor модел с височина на лопатките 1,2 m, диаметър на ротора 1,2 m, профил на лопатките NACA0018, брой лопатки – три.

На Фиг.1 е показано зонирането на енергийния поток в страната [2], представляващ генерираната мощност отнесена към площта на диска на турбината A_d=2RH.

Фиг. 1 Зони на енергиен потенциал на ветровия поток в България

Ако се приеме стойността на $P_{wA} \approx 100 \div 200 \text{ W/m}^2$, то при $A_d = 1,44 \text{ m}^2$, за средната скорост на вятъра се получава V $\infty \approx 6 \text{ m/s} (P_{wA} = 139.32 \text{ W/m}^2)$.

При тези размери, и сила на вятъра, една такава турбината би имала предимно маломощни приложения, свързани със зареждане на акумулаторни батерии захранващи битови уреди, осветителни тела, телекомуникационни съоръжения, помпи, селскостопанска техника и други.

Те се характеризират с ниски стойности на коефициента на мощността, представляващ отношението на мощността на турбината към мощността на идеалната:

$$C_{p} = \frac{P_{wtr}}{0.5\rho A_{d} V_{\infty}^{3}} \in [0.15 \div 0.35]$$

В Таблица 1 са представени характерни стойности на C_p за VAWT от разглеждания клас [11].

Табл. 1 Характерни стойности на С_Р за някои видове VAWT и техните приложения

	C _P		
Тип ВТ	стандартна	оптимална	
	конструкция	конструкция	
Darrieus (за водна помпа)	0,15	0,30	
Многолопаткова селско- стопанска (обслужваща водна помпа)	0,10	0,.30	
Savonius (за зареждане на акумулатори)	0,10	0,20	
Darrieus вятърна турбина	0,15	0,35	

Въз основа на тези данни следва да се очаква, че стойността на С_Р ще е около 0,15.

От Фиг.2, показваща зависимостта на Ср от скоростното отношение λ на турбината, следва, че:

$$\lambda = \frac{\omega_{\rm wtr} R}{V} \approx 1,4 \; , \label{eq:lambda}$$

т.е. ъгловата скорост на турбината би следвало да е $\omega_{\rm wtr} \approx 14~{\rm s}^{-1}.$

Фиг. 2 Зависимост $C_P = f(\lambda)$ [1]

От графиката на Фиг.3, представляваща факторът на уплътняване $\sigma'(\lambda)$, се вижда, че за $\lambda=1.4$:

$$\sigma'(\lambda) = \mathrm{B}\ell / \mathrm{R} \approx 0,72$$
,

което определя дължина на хордата $\ell = 0,3$ m.

Фиг. З Зависимост на уплътняването спрямо λ [3]

За мощността на турбината се получава P_{wtr}=183,51W.

Линейната скорост на лопатките ще бъде $V_{\rm b} = R\omega_{\rm wtr} = 8,4 {\rm m/s},$ а въртящият момент на

турбината
$$T = \frac{P_{wtr}}{\omega_{wtr}} = 21,84 \text{ Nm}$$

Обобщените данни за модела са дадени в Таблица 2.

Табл. 2 Входни данни за модела на VAWT

Несмутена скорост на вятъра [m/s]	6
Плътност на въздуха [kg/m ³] (при 25°С, налягане 101,325 kPa)	1,18
λ (TSR)	1.4
Уплътняване	72%
Брой лопатки В	3
Профил на лопатките	NACA0018
Коефициент на мощността Ср	0,15
Височина на лопатките Н [m]	1,2
Радиус на ротора на турбината R [m]	0,6
Хорда на лопатките <i>l</i> [m]	0,3
Ъглова скорост на ротора $\omega_{\text{wtr}} [s^{-1}]$	14
Мощност Р _{wtr} [W]	27,53
Площ на ротора A _d [m ²]	1,44

3. Изграждане на моделът

Фиг.4 Пространствен компютърен модел на VAWT H-rotor

Компютърният пространствен модел се изгражда в средата на САD системата SolidWorks –Фиг.4.

Формирането на профила на лопатките NACA0018 ce базира на известни математически зависимости [4], чрез които се генерират координати XYZ на точки за съответните сечения. За постигане на достатъчна точност при изграждането на лопатката и впоследствие на нейната мрежа от крайни елементи, всяко сечение ce изгражда от минимум 100 точки. 3a постигането на гладка повърхнина на лопатката се използва интерполация чрез кубични сплайни [5].

Вятърната турбина - Фиг.5 и Фиг.6 е асемблирана, като са дефинирани съответни връзки, позволяващи ориентиране на ротора в различни позиции, задаване на различни ъгли на завъртане на лопатките (pitch angles), както и използването на различни фамилии профили.

Фиг. 5 Ориентиране на ротора с лопатките а) ротор завъртян на позиция $\Theta = 40^{\circ}$, pitch angle $\beta = 0^{\circ}$;

b) ротор завъртян на позиция Θ=40°, β=-25°

След завършване на моделирането, геометрията се прехвърля за изследване чрез

метода на крайните елементи (МКЕ) към пакета ANSYS.

Турбината се разполага във флуид – въздух (continuous fluid), при 25°С (isothermal) и налягане 101,325 kPa.

При флуидните симулации - Фиг.9 и Фиг.10, се прилага подхода на изчислителна флуидна динамика (CFD), основаващ се на изграждане на флуидни канали и решаване на уравненията на Navier-Stokes, описващи изменението на параметрите на всеки еднофазен флуиден поток, чрез МКЕ [7].

Фиг. 7 ВТ разположена във флуиден канал

Фиг. 8 Поглед А от Фиг.7

Изчислителни цели са налягането и скоростта на обтичане и породените сили и моменти.

За системата от флуидни канали, се прилагат еднакви мащабиращи параметри, с оглед на избягване на изчислителни грешки.

Параметрите на флуидната област са:

число на Reynolds Re=1.112×10⁶;

• число на Mach M<<1 (поток с подзвукова скорост);

непрекъснат флуид;

• турбулентен модел - shear stress transport;

• тип топлоотдаване - isothermal при 25°С,

• ниво на турбулентна интензивност – средна от 5%;

• гранични условия – входяща скорост V = 6 m/s, изходящо налягана p_w равно на атмосферното, при стените на флуидния канал срязващото напрежение е нула, т.е. отсъства триене.

Качеството на мрежата е 87,7%, като това на елементите е 0,77, т.е. възможността за грешки в етапа на дискретизация е малка.

Глобалната координатна система (GCS) е разположена в центъра на основата на кулата и е ориентирана, както е показано на Фиг.7. На Фиг.8 е показана локалната координатна система (LCS) за лопатка 1. Съгласно ориентацията са възприети две основни повърхнини на лопатката, които са подложени на ветровото натоварване -(наречена blade1 out) и повърхнина -X повърхнина +x(наречена blade1 in). Посредством LCS се отчитат съответните нормални И тангенциални усилия, действащи върху всяка лопатка.

След завършване на CFD симулациите, е възможно отчитане и анализиране на резултатите в различни точки и равнини:

На фигури от Фиг.9 до Фиг.17 са представени резултати за изследвани случаи на лопатка тип NACA0018 при β=90°.

Фиг. 9 Разпределение на скоростта на флуида по ос x в надлъжно сечение (xz plane, y=1,36m, GCS) през средата на лопатките, позиция Θ=0°, β=0°

Фиг. 10 Разпределение на скоростта на флуида по линии А, В, С от Фиг. 9

Фиг. 11 Разпределение на скоростта на флуида по ос х в надлъжно сечение (xy plane, z=0m, GCS) през средата на канала, Θ=0°, β=90°

Фиг. 12 Разпределение на скоростта на флуида по линии A, B, C от Фиг.11

Фиг. 13 Разпределение на налягането на флуида в надлъжно сечение (xz plane, y=1,36m, GCS) през средата на лопатките, Θ=60°, β=0°

Фиг. 14 Разпределение на налягането на флуида в надлъжно сечение (xy plane, z=0m, GCS) през средата на канала, Θ=60°, β=0°

Фиг. 15 Въртящ момент (при спрян генератор) за различни позиции на ротора, β=0°

Фиг. 16 Тангенциална сила Fz върху всяка лопатка при завъртане на ротора от 0 до 110°, β=0°

Фиг. 17 Тангенциална сила Fz върху една лопатка при пълен оборот на завъртане на ротора β=0°

Фиг.18 Нормална сила Fx върху една лопатка при пълен оборот на завъртане на ротора, β=0°

Габл.	3 Норма	лна	и танг	енциал	тна	сила	върху	една
	лопатка	при	пълен	оборо	т на	завъ	ртане	

Позиция [°]	pitch angle	e = 90°	pitch angle = 95°		
	Тангенциална сила	Нормална сила	Гангенциална силаНормална сила		
	Fz [N]	Fx [N]	FZ [N]	Fx [N]	
0	-0.921	-8.344	-0.951	-8.168	
10	-0.675	-8.981	-0.783	-9.073	
20	-0.750	-8.182	-0.823	-8.812	
30	-0.407	-4.430	-0.490	-4.994	
40	-0.169	-3.022	-0.094	-3.480	
50	-0.437	-5.244	-0.190	-5.669	
60	-1.443	-8.662	-0.930	-8.140	
70	-1.396	-9.515	-1.766	-10.274	
80	-0.324	-5.641	-0.902	-8.141	
90	0.269	-0.625	0.050	-3.495	
100	-0.006	4.444	0.263	1.676	
110	-1.064	8.659	-0.449	6.543	
120	-1.780	10.245	-1.426	9.706	
130	-1.167	9.231	-1.791	9.732	
140	-0.391	8.858	-0.547	8.687	
150	-0.386	9.350	-0.314	8.894	
160	-0.645	10.175	-0.498	9.835	
170	-0.950	10.716	-0.800	10.597	
180	-1.203	10.550	-1.081	10.697	
190	-1.342	10.092	-1.238	10.362	
200	-1.521	9.068	-1.434	9.543	
210	-1.605	7.666	-1.491	8.559	
220	-1.505	6.139	-1.498	6.903	
230	-1.411	5.391	-1.470	5.967	
240	-1.064	4.807	-1.338	5.061	
250	-0.159	4.862	-0.506	4.850	
260	-0.151	3.039	-0.084	4.383	
270	-0.259	-0.980	-0.237	1.416	
280	-0.068	-4.418	-0.172	-2.751	
290	-0.421	-4.428	-0.052	-4.881	
300	-1.231	-3.921	-0.884	-3.660	
310	-1.338	-3.510	-1.142	-2.761	
320	-0.895	-2.883	-0.736	-2.065	
330	-0.557	-3.435	-0.501	-2.942	
340	-0.768	-5.610	-0.713	-4.979	
350	-1.175	-8.571	-1.190	-8.094	

Фигури 9÷12 показват съществено изменение на скоростта на флуида с при преминаване през турбината. На Фигури 13÷14 е дадено налягането при положение когато лопатка 2 поема нормално насочено ветрово натоварване. На Фиг.15 е функцията на въртящия момент на VAWT при различни позиции на ротора. На Фиг.16 е представено тангенциалното усилие върху всяка една лопатка при различни позиции на ротора. На Фиг.18 и в Табл.3 са дадени стойностите и на нормалното усилие.

Съществено е, да се отбележи, че данните на графиките са отнесени към дебелината на сечението δ и за да се получат реалните стойности е необходимо да се умножат с отношението H/δ .

Извършени са и симулации с $\beta=5^{\circ}$ Фиг.19-20.

Фиг. 19 Въртящ момент (при спрян генератор) за различни позиции на ротора, при различни β

Фиг. 20 Тангенциална сила Fz върху всяка лопатка при завъртане на ротора от 0 до 110°, β=5°

Заключение

Изграден е 3-D компютърен модел, с който могат да се симулират различни позиции на ротора, ъгли на завъртане на лопатките и да се анализират различни профили на турбинните лопатките. В резултат на CFD симулациите се получават характеристиките на флуидното поле (скорост и налягане), както и силите и моментите, възникващи от аеродинамичното взаимодействие.

Резултатите от числения анализ позволяват идентификацията на характеристиките и параметрите на апроксимиращи аналитични модели, с помощта на които да се реализира оптимално управление на ветрогенератора.

Благодарности

Авторите изказват благодарност на ФНИ на РБ, за финансирането на разработката по линията на договор ДО-02-348/2008 "Система за мониторинг, диагностика и управление на ветрогенератори".

Литература

[1] Hau E., 2006, Wind Turbines – Fundamentals, Technologies, Application, Economics, Springer;

[2] Georgieva V., 2006, Wind Energy in Bulgaria, Ministry of Economy and Energy, Bulgaria;

[3] Johnson G., 2004, Wind Turbine Power, Energy and Torque, USA;

[4] Marzocca P., 2009The NACA airfoil series, Clarkson University;

[5] SolidWorks, 2012, Reference Guide;

[6] Walker J., N. Jenkins, 2002, Wind Energy Technology, John Wiley and Sons;

[7] Anderson J., 1995, Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill Science;

[8] Y. Staelens, A, 2003, Straight-Bladed Variable Pitch VAWT Concept for Improved Power Generation, Elsevier;

[9] Miau J. et al, 2011, Wind-Tunnel Study on Aerodynamic Performance of Small VAWT, JCSME,; [10] ANSYS, Theory Reference;

[11] Beri H., Y. Yao, 2011, Double Multiple Stream Tube Model and Numerical Analysis of Vertical Axis Wind Turbine, Energy and Power Eng., 3, 262-270;

[12] Адърски К., Ю. Генов, К. Арнаудов, 2012, Моделиране и симулационно изследване на вятърна турбина с вертикална ос на въртене - тип H-rotor. Част1 модел на аеродинамичното взаимодействие (в настоящия сборник);

[13] Howell R., N. Qin, J. Edwards, N. Durrani, 2010, Wind tunnel and numerical study of a small vertical axis wind turbine, Renewable Energy 35 pp.412–422;

[14] Nobile R., M. Vahdati, J. Barlow, A. Mewburn-Crook, Dynamic stall for a Vertical Axis Wind Turbine in a two-dimensional study, World Renewable Energy Congress, Linkoping, Sweden 2011- Proc., 4225-4232;

[15] Castelli M.-R., G. Simioni and E. Benini, 2012, Numerical Analysis of the Influence of Airfoil Asymmetry on VAWT Performance, World Academy of Science, Engineering and Technology, 61, 312-321.

MODELING AND INVESTIGATION OF VERTICAL AXIS WIND TURBINE – TYPE H PART 2 CFD SIMULATION

Yanko SLAVCHEV, Julian GENOV, Konstantin ARNAUDOV TU – Sofia, 1756, Bulgaria

In this paper is performed 3-D modeling and simulation study (fluid CFD simulations using finite elements) of a wind turbine with a vertical axis of rotation (VAWT type H-rotor). Simulations are made for various turbine positions and pitch angles. It was obtained the data for the torque, forces and power of the investigated wind turbine.