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Abstract — Two approaches for synthesizing a robust regu-

lator for a laboratory model of the servo system manufactured 

by Inteco are compared: mu synthesis using dksyn routine and 

H∞ design with regional pole placement constraints using 

h2hinfsyn, both from Robust Control Toolbox for MATLAB. 

Some of the inaccurate parameters are introduced as sources of 

structured uncertainty. Additionally, unstructured uncertainty 

has been introduced due to the presence of nonlinearity in the 

"gap" type object. Simulation experiments were performed 

with the model. The operability of the created regulator was 

tested on the experimental set-up. 
 

Index Terms — Robust Control, μ synthesis, H∞ design, pole 

placement 

I. INTRODUCTION 

The only complete and practically usable tool for solving 

the problem of H∞ and μ optimal synthesis is the Robust 

Control Toolbox for MATLAB. Nevertheless, other attempts 

for creating software for robust control has been made: For 

example, to meet the need for highly efficient, portable 

programs in the field of automatic control theory, under the 

NICONET (Numerics In COntrol NETworks) project [1] an 

Internet-accessible virtual library of FORTRAN computing 

programs called SLICOT (A Subroutine LIbrary in systems 

and COntrol Theory) [2] has been developed by leading 

experts in management theory in the European Community. 

Another interesting software bunch is the LCT Toolbox [3] 

from the Catholic University of Leuven, which aim is to 

aggregate the existing software tools for robust control 

design in MATLAB in objects from the according classes 

along with the measurement information and results from 

the identification.  

In this paper a brief comparison between two approaches 

for robust control synthesis is made: mu synthesis using 

dksyn routine and H∞ design with regional pole placement 

constraints using h2hinfsyn, both from Robust Control 

Toolbox for MATLAB. The work is illustrated by a physical 

model of servo system. A similar results obtained using 

author software, included in the SLICOT library, are 

described in [4]. 

II. PHYSICAL MODELS USED 

To demonstrate the methods of robust synthesis using 

both approaches, a physical model of a servo system from 

the laboratories of the Department of Systems and Control at 

the Technical University - Sofia was used.  
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Fig. 1. Model of the servo system 

The servo system (Fig. 1) consists of a DC motor, a 

tachogenerator, a load with a significant moment of inertia, 

an element with one revolution of dead zone, a magnetic 

brake, an incremental encoder, an output disk with a reducer 

[5]. All parts are rail mounted and can be easily moved. The 

shaft rotation angle is measured by both the incremental 

encoder and the tachogenerator. The motor is controlled by 

PWM so that the control signal is scaled, i.e.         . 

The system connects to a computer via an RT-DAC device 

and can be controlled via MATLAB. The dynamics of the 

system is described by the following dependences according 

to Fig. 2: 
 

                              (1) 

  ̇                        (2) 

 

where       is the input voltage,      is the current,      
is the angular velocity of the shaft,   is the resistance of the 

motor coil,   is the inertial moment of all rotating parts,   is 

the coefficient of friction,        is the electromagnetic 

torque and        is the reaction of the motor coil. 

 

 

Fig. 2. Model of the dynamics of the servo system. 

 

Combine the electrical (1) and mechanical (2) equations: 
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. The model is linear 

because the element with a gap (dead zone) is not included, 

as well as some nonlinearities due to friction. The system is 

then described by the following transfer functions:  
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From (4) a description in state space is obtained: 
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Linearization at the zero point with the gap element 

included would lead to an uncontrollable model, so a 

slightly different linear model is used for μ synthesis. It is 

obtained with the command in MATLAB linmod with 

simulated excitation. It is also possible to linearize not in the 

dead zone, or to approximate it with a small static gain. 

Two types of models with uncertainty have been obtained 

for the purposes of robust synthesis: 

a) Structured uncertainty model, where    is an uncertain-

ty parameter with nominal value 186 rad/(s*V) and an 

uncertainty interval [166, 206] and    is an uncertainty 
parameter with a nominal value of 1.04 s and an uncertainty 

interval [0.84, 1.24]. This model is named G1m; 

b) The logarithmic amplitude frequency responses are 

obtained for different values of these parameters. The maxi-

mum interval between them is modeled with unstructured 

uncertainty with maximum relative error  

 mult    [
 mult  

  mult 
] and unmodeled dynamics 

𝛥mult  [
𝛥mult  

 𝛥mult 
]. Then the model with a multiplica-

tive uncertainty is represented as follows: 
 

G1nm = (I + Wmult Δmult) G1m        (6) 
 

The estimates of the maximum multiplicative uncertainty 

are as follows: 

 

 mult  
 .24    .03 2

   .3 
 ,  mult  

 .462   .114

   . 24
 

      (7) 

 

 

Fig. 3. Logarithmic frequency responses of G1m for 20 arbitrary admissible 

realizations of the parameters with uncertainty  

In Fig. 3 the logarithmic frequency responses of G1m for 

20 arbitrary admissible realizations of the parameters with 

uncertainty are shown. The figure for G1nm has almost the 

same appearance and is not shown. 

µ regulators for the two models described above are 

synthesized in accordance with the scheme of Fig. 4: 
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Fig. 4. Synthesis scheme 

 

The weighting filters are as follows:        is the 

reference model;    
   

          
 is the etalon closed-loop 

system model;    
 .0      

 .04   
 is the control penalty; 

   
    0

10   
 is the performance filter;    

 .001 

   
 is the noise 

model. 

III. SYNTHESIS OF µ REGULATORS KDMUM FOR G1M  

AND  KDMUNM FOR G1NM    

So, the first approach is to synthesize µ regulator using 

the MATLAB function dksyn, where the K step (H∞ design) 

is made by γ iterations of obtaining successive suboptimal 

H∞ regulators, estimated by solving Riccati equations 

approach; the model with uncertainty is first discretized and 

the regulator is in a discrete form. 

The first µ regulator Kdmum is synthesized for the 

discretized with Ts=0.002 s model with structured 

uncertainty G1m. It achieves robust stability with a maximum 

value of µ norm 0.1964 (Fig. 5a) and the robust performance 

µ norm achieved is 0.843 (Fig. 5b). 
 

 

Fig. 5a. Robust stability for Kdmum with G1m 

 
Fig. 5b. Robust performance for Kdmum with G1m 
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The step responses at reference 1 rad/s for 20 arbitrary 

admissible realizations of the uncertain parameters in the 

linear model are shown in Fig. 6: on the left is the response 

to the reference, on the right - to the load disturbance. 

 

 
Fig. 6. Step responses for Kdmum with G1m 

 

The second µ regulator Kdmunm is synthesized for the 

discretized with Ts=0.002 s model with unstructured uncer-

tainty G1nm. It achieves robust stability with a maximum 

value of µ norm 0.021 (Fig.  a) and robust performance 

with µ norm 0.  2 (Fig.  b). 

 

Fig. 7a. Robust stability for Kdmunm with G1nm 

 

Fig. 7b. Robust performance for Kdmunm with G1nm 

The simulation results are similar to those for for Kdmum with 

G1m and are not shown. 

IV. SYNTHESIS OF H∞ REGULATORS K005MD FOR G1M  

AND  K005NMD FOR G1NM    

In this chapter the H∞ synthesis is made by the Robust 

Control Toolbox function h2hinfsyn. It employs LMI 

techniques. According to Fig. 8, it works as follows:  

 

 

Fig. 8. Work scheme of h2hinfsyn 

 

keeps the H∞ norm of the transfer function G from w to 

z∞ below the value specified; 

keeps the H2 norm of the transfer function H from w to z2 

below the value specified; 

minimizes a trade-off criterion of the form    
     

 , 

where the weights   and    are given by the user; 

places the closed-loop poles in the LMI region specified by 

the user. 

In this chapter h2hinfsyn is used to make H∞ only design, 

but with restrictions to poles of the closed-loop system. The 

H∞ synthesis is made for the nominal realizations of the 

continuous-time G1m and G1nm, and then the corresponding 

regulators are discretized. 

The pole placement restriction for the both cases is that 

the real part of the continuous closed loop system pole has 

to be less or equivalent to -0.05, which is (roughly) 

equivalent to the closed loop poles of the discrete time 

system to be in a circle with radius 0.999. Thus, we try to 

compensate the possible lack of robust stability by explicit 

moving away from the instability region. 

The first H∞ regulator K005md is synthesized for the 

discretized with Ts=0.002 s model with structured 

uncertainty G1m. It achieves robust stability with a maximum 

value of µ norm 0.1923 (Fig. 9a) and the robust performance 

µ norm achieved is 0.8783 (Fig. 9b). 

 

Fig. 9a. Robust stability for K005md with G1m 
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Fig. 9b. Robust performance for K005md with G1m 

 

The step responses at reference 1 rad/s for 20 arbitrary 

admissible realizations of the uncertain parameters in the 

linear model are shown in Fig. 10: on the left is the response 

to the reference, on the right - to the load disturbance. 
 

 

Fig. 10. Step responses for K005md with G1m 

 

The overshoot is higher than in the case of μ design. 

Checking arbitrary realizations of the uncertain parameters 

shows that the absolute value of the closed-loop discrete 

time system poles is about 0.9999, i. e. the system is stable 

(the robustness is already proven by the Fig. 9b) 

The second H∞ regulator K005nmd is synthesized for the 

discretized with Ts=0.002 s model with unstructured uncer-

tainty G1nm. It achieves robust stability with a maximum 

value of µ norm 0.0353 (Fig. 11a) and robust performance 

with µ norm 0.034 (Fig. 11b). 

 

Fig. 11a. Robust stability for K005nmd with G1nm 

 

Fig. 11b. Robust performance for K005nmd with G1nm 

 

Similar to the Fig. 10 are the results of the simulation of 

K005nmd with G1nm and are not shown. The absolute value 

of the closed-loop discrete time system poles is also about 

0.9999. 

V. CONCLUSION 

From the experiments made with the real object (Fig. 12) 

it can be seen that workable regulators are obtained. Using 

Robust Control Toolbox functions robuststab and robustperf 

they are proven to be robust. The order of the µ controllers 

is not very high - they have 9 states for both models, and for 

Kd1nm it can be reduced to 5. The order of K005md is 7 and 

for K005nmd is 9. 

 

 

Fig. 12. Step responses for Kd1m. In light - reference angular velocity, in 

dark – actual angular velocity. 
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