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Abstract — The problem of design, implementation and 

tuning of HIL simulators is rising together with systems 

complexity. Many elements of the real system cannot be 

simulated easily and precisely. In case of hybrid objects the 

complexity arises. Very hard is implementation of mixed 

simulators – having both computer elements and hardware 

elements for extended object simulation. Here is presented an 

approach of using program generation technique for creation of 

object simulators. Using one and the same approach for 

implementation of the simulator and the control system is also 

discussed. Objects and control systems having different 

structure are presented in this paper. 

Index Terms — program generation; HIL simulation; object- 

control system co-design.  

I. INTRODUCTION 

Design and implementation of hazardous objects or objects 

generation real danger for people is a complex task. To make 

this process easier and robust from many years object, control 

system and object simulator are taking part simultaneously. 

With the era of cheap computers for embedding, computer-

based simulators became an usual thing. Many approaches for 

designing and implementing simulators are available 

[1][2][3]. 

Very complex systems like nuclear reactors, planes of any 

scale and similar are simulated form tens of years. The increasing 

complexity of medical apparata makes them an object for 

simulation as well. Together with human body simulators, this is 

one of the most rapidly growing area of research. To use 

simulator of a real system has many advantages. Comparable 

with experiments with real system some of these advantages are: 

avoiding some dangerous situations; tuning and optimization of 

control algorithms, alarms and abnormal situations handling; 

near to reality personnel training; history generation for specific 

situation analyzes. 

Model-in-the-Loop (MIL) [4], Hardware-in-the-Loop (HIL) 

[4], Software-in-the-Loop (SIL) [5], Agent-based simulators 

[6] are some of the various types of modelling techniques 

today. Simulators are varying from fully numerical to mostly 

physical as implementation. All simulators are built on the idea 

of implementation of some model of the object. This model 

(the simulator) has to exchange data with the experimental 

environment or the controller.   
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A brief examination of the papers and on-line materials 

today shows many different simulators and simulation 

environments [7][8][9]. 

The control systems architecture can be defined from 

different points of view. One of these points is how the object 

is situated – if it is ‘concentrated/centralized’ and ‘distribu-

ted’ we have correspondingly centralized or distributed 

control system. Discussing distributed control systems we see 

how their architecture answers the object’s structure. The 

object can be distributed on the level of parameters (huge 

objects). It can be distributed as points of control – many 

input points positioned (enough) far from each other. In all 

cases, the control system includes communication subsystem 

that generates delays, loses data because of different reasons, 

etc. [3] With the approach, presented below, both concen-

trated and distributed object simulators, communication 

network influence, operational reorganization and other 

problems will be addressed. 

Here will be presented the usage of program generation 

technique for control systems and simulators implementa-

tions. These implementations in the area of control systems 

cover wide range of aspects, mathematical and logical 

elements, networking and other. The program generation 

approach is one of the most used in the area of both control 

systems implementation and simulators implementation. 

Program generation itself has many variants – from full 

code-generators (examples are ADA-based real-time systems 

and MATLAB Embedded Studio) to configurators, based on 

pre-compiled libraries and table-generation of the system 

structure.  

In many situations different sets of tools are used for 

control system implementation and for simulator implemen-

tation. Here is presented an integrated approach for design 

and implementation of both the control system and the 

hybrid-type object simulator using one program generator. 

The present paper is structured as follows:  

 Section II resents how objects, object simulators and 

control systems are elements of one and the same 

approach;  

 Section III presents a short description of the used 

program generator and the formal model implemented 

by it;  

 Section IV presents several objects, their analyses and 

how their simulators are implemented;  

 Section V includes the conclusion.  
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II. BACKGROUND OF THE PRESENTED APPROACH  

We mentioned before, one the main types of simulators is 

the s-called “Software-in-the-loop” (SIL). This is an imple-

mentation of some mathematical and logical model that can 

be connected to the controller – an other software implement-

tation.  

This idea is old, widely used and implemented in many 

research environments (like MATLAB/SIMULLINK and 

other). Next step to make the simulator or the controller more 

realistic is to include some physical interface. The idea to use 

the same interface as the original object interface is relatively 

new. 

It became possible to use this approach only in the last 

20-25 years after the jump in performance, stability, quality 

and accessibility of the computer hardware. In that period 

peripheral devices became enough versatile and cheap, and 

industrial communication became enough fast and stable. 

The structure of a complex control system for complex 

object is of layered type. The object is the lowest layer. On it 

is Layer I – the control systems for local sub-object or 

element. Layer II is the integrating controller – for specific 

subsystem or object. The Layer III is the functional control – 

integral functionality/coordination. This structure is very 

common to the industrial systems for complex automatizaton 

from mid-80s.  

In the next discussions we will assume first a single 

(monolithic) object. Next will be discussed how the program 

generation approach for simulators implementation expands 

to distributed objects and controllers.  

The implementation of computer-based simulator with real 

(physical) periphery we can present as it is shown in Fig 1. 

 

 

Fig. 1. General structure of a multi-layered simulator 

 

The combination of the control system and the simulator in 

one complex system can be represented with the structure 

shown in Fig. 2. 

According to Fig. 2, we can simulate the object in different 

levels of physical detailization:  

 Full simulation. He is used physical interface. It is of 

the same type as that of the real object. It may include 

parts of hardware of the object; 

 Partial simulation. Used physical interface emulates 

the real interface; 

 Partial simulation with data exchange. This exchange 

simulated physical connections on a base of computer 

networking. 

 

Different variants of simulation implementations are 

discussed in [1]. Only those including elements of physical 

hardware will be targeted here.  

In any case, if some elements of Human-Machine Interface 

are presented, they are included “as is”. This means that all 

protocols – commands and data exchange are included in 

their original versions. 

When we have to simulate a distributed object, its 

“distributiveness” has to be simulate also. All know types of 

distributiveness have to be simulated – delays of any type, 

parameter distribution (like temperature), communication 

and software delays, transportation, etc. As usual, the 

difficulty and complexity of this simulation is higher than that 

of the control system. When we have to implement additional 

“synchronization” line between the simulator and the control 

system to control the simulated time flow, as shown in Fig. 2, 

the complexity increase even more. 
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Fig. 2. Combined structure “control system ↔ simulator” 
 

III. THE PRGEN – PROGRAM GENERATOR FOR DISTRIBUTED 

CONTROL SYSTEMS AND OBJECT SIMULATORS 

The idea for program generation here is realized as a 

program generator table type supported with extended prog-

ram library. It is adequate for both stand-alone and distributed 

systems. This program generator has many version over the 

time [10][11][12]. 

The basic idea of the control structure representation is an 

extended Moore machine. It assigns specific actions for every 

node of the state machine. Very specific property of this 

program generator and implemented by it extended Moore 

machine is the possibility to embed communication in the 

state graph. This approach makes possible to generate 

distributed systems operating as a “virtual mono-machine” or 

as an agent-based / component-based system. 

Technically control algorithms are presented as graphs. 

Every designed system is described by its activities.  Each 

activity is implemented by separate thread. The activity 

thread consists of two different graphs: 

 A State Transition Graph (STG) – the description of the 

general behaviour of the activity thread is done by finite 

automaton modelling using graph model. The graph 

representation  is as the described in [13] statechart. 

 A Signal Flow Graph (SFG) – a graph model 

representing the signal transformation flow (the 

dataflow) [18]. Similar to Simulink® data model it 

consists of data paths and Function blocks. It represents 

data transformation paths (mostly continuous system’s 

part), decision preparation based on numerical 

calculations (based on numerical calculations predicates 

used in transitions of the State Transition Graph), 

handles I/O and communication drivers. 

A. State Transition Graphs 

System behavior is represented by at least one activity 

thread for each node. Every activity thread is formally 

represented by its STG. This STG defines the logical 

behaviour of the thread. Some specific implementations 

contain a single state with an infinite loop to itself. Every STG 

has an entry point (initial node). This point only shows where 

the execution of the STG starts. Depending of the data 

transformations associated to some state, one or several 

Signal Flow Graphs can be attached to it. Every state has at 

least one output transition (the exception is the END state). 

Transition to the same state is normal but has to be done in 

different execution intervals (e.g. no infinite loops in one 

control period). Decision making for transition from one state 

to the other is based on an associated to each state Binary 

Decision Diagram (BDD). Values for the BDD’s predicates 

are coming from the State Transition Graphs’ of the node. 

The execution period for each STG is defined explicitly. 

This period defines how often the graph is activated to 

execute this specific state. If necessary, the execution period 

can be changed in runtime, but only when this specific graph 

is not in its execution mode. 

To implement both synchronous (time-driven) and 

asynchronous (event driven) control algorithms, two 

corresponding types of state transitions are defined. A 

synchronous transition means that the graph execution stops 

until next activation period arises. The associated activity task 

falls in sleep mode. When an asynchronous transition takes 

place, the activity task moves to the following state without 

stops or delays and starts its execution immediately. 

B. Signal Flow Graphs 

The SFG models the data flow of the system. Entry points 

of the SFG are usually Function blocks (FB) implementing 

some drivers – input drivers (or in some situations with 

delayed output – output drivers), communication drivers or 

data transmission blocks. Input data and data from previous 

execution moments are propagated to some FBs. These FBs 
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make calculations (e.g. data transformations), check 

constraints or conditions. Produced data are propagated to 

other FBs. Thus are generated outputs of different type – 

output to device drivers, communication, to the user interface, 

data logging, etc.  

The core of this execution control is the data flow control. 

For a single activation of the SFG, each FB is activated only 

once. The FB activation is function of FB’s input connections 

readiness. There are two types of connections: activating and 

non-activating. At the SFG’s activation point the execution 

starts with FBs having only passive (non-activating) inputs. 

This means that this FB is always ready for activation. An 

example is input driver FB. It only generates data output but 

its input is from the environment. When all “always ready” 

FBs are executed the remaining FBs are checked for 

readiness. If all activating inputs of some block are “ready” 

this means that this block is ready for activation and it is 

queued for activation. In some moment more than one FB can 

be ready for activation. They are executed in the way they are 

found “ready”. This does not influence final SFG results 

because in that moment executed modules are independent to 

each other. The SFG interpreter follows this logic and 

activates all FBs in the presented manner until all FBs are 

executed. In case of data loops all those paths are “non-

activating” and cannot generate infinite calculation loops in a 

single execution period. 

For every FB are defined three possible type of inputs. 

There are defined also two possible types of outputs. 

The inputs are as follows [22]: 

 Link Inputs (activating or non-activating);  

 Parameter Inputs;  

 Internal State Inputs. 

Every input has a single data source. Links to more than 

one data sources (FB outputs) are impossible because this will 

be ambiguity.  

Function Block outputs are as follows [22]: 

 Static outputs – can be a data source of unlimited 

number of link inputs.  

 Point to point outputs – forced target output. They 

cannot be data sources for data inputs. 

All inputs and outputs can be scalar, vector or matrixes. 

This allows to generate complex system models.  

The difference between this program generator’s model 

and other is the fact that the communication subsystem is 

included in the FB library. There are several Function Blocks 

implementing logical and physical data exchange protocols 

for internal and external data exchange. Exploiting this 

specific approach one can generate stand-alone or distributed 

control system or simulator as a “virtual mono-machine”. 

This makes the design process much easier and free of 

specific technical details. The communication bus is 

implemented hidden, but observable [14][15]. 

The extended description of the model of the presented 

program generator is available in [10][16]. 

IV. IMPLEMENTATION OF OBJECT SIMULATORS 

In this part of the paper will be discussed the control 

systems and the simulators of two different types of objects. 

Both those combinations “control system-hybrid simulator” 

were implemented using the presented before program 

generator PRGEN and implemented by it using systems 

generation approach. Both objects have analogue and discrete 

(logical) behavior. Also, their sizes as number of inputs/ 

outputs are different. The complexity is incomparable. The 

second one has a batch type of functioning. 

The first object is a business building. The second one is 

an apparatus for extracorporeal plasma apheresis. The 

business building is huge distributed object. The medical 

apparatus is a relatively small stand-alone machine. 

The discussion will cover the following elements: 

 how the simulator will help; 

 the structure of the real object; 

 problems in simulator’s program generation process 

and their solving. 

A. Business building simulator 

The first object that will be presented is a business 

building. It has restaurants, stores, several floors and other 

controllable objects. 

Any attempt to implement control system for such an 

object without decomposition and vertical integration will fail 

because of the very huge number of control points, feedback 

signals, distributiveness in both parameters and geography, 

unobservable influences between system elements, etc. There 

are other reasons, which are as follows: 

 Only limited experiments with the real equipment are 

possible. Collection of real data is expensive. After the 

object’s exploitation beginning many experiments are 

impossible (because they need to collect data, property 

of the utility companies – water, heating, electricity);  

 experimenting some dangerous scenarios is impos-

sible after the official start of the object exploitation;  

 periodic training of the personnel is needed;  

 an experimental test-bed for analyses of specific 

situations is needed. 

A list of some elements of control are: 

 total electricity load measuring (and control); 

 for every separate object – reading heat, water and 

electricity metering devices; 

 heating and other equipment control; 

 control for abnormal situations and functioning; 

 unbreakable system log; 

 etc. 

Thousands sensors with different level of complexity were 

installed in the building. Hundreds of actuators, switchers and 

intelligent output devices had to be controlled. So complex 

object has multi-layered requirements for exploitation.  

All of these technical, functional and security requirements 

needed a multi-layered control system. Without of an appro-

priate simulation the testing, tuning and normal exploitation 

of this control system was impossible.  

 System decomposition was provided first on the level of 

separate sub-objects. According to their similarity several 

classes were built. A single class template for every specific 

class was generated (PRGEN provides a possibility to 

generate templates with different levels of complexity and to 

store them as an extension to the basic FB library). These 
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templates were instantiated for every sub-object. This is a 

normal object-oriented technique but it is not very common 

in this area. The Fig. 2 represents an approximation of the 

final structure. The size of the final simulator had to have two 

upper levels for simulation of integrated functions; three 

logical low-level configurations; seven computational threads 

with three thousand function blocks included. This size 

makes the process very hard. To avoid this the size of the 

simulator was reduces ten times (all similar elements were 

presented in reduced quantity). Nevertheless, it included all 

computational and logical structures.  

Additionally, Function Blocks library was extended with 

blocks simulating human streams and other specifics. 

Specific automata for abnormal situations were designed. 

They include malfunctions injectors in the electricity and 

water supply simulation, different behavioural scenarios and 

other. All simulation modules were implemented using 

ARM-based Single-Board Computers (SBC). They had the 

required physical periphery and communication.  

As a conclusion we can say that the controlled object is a 

heterogeneous distributed discrete-event system. It has huge 

number of analogue inputs and outputs. It also has several 

sub-objects of analogue type of functionality. Many input and 

output devices communicate to the controllers using MBUS 

physical layer and MODBUS protocol over it. The structure 

of the MODBUS/MBUS  connections is shown in Fig. 3.  

The upper control layer is implemented using SCADA 

system running on an industrial PC computer. Number of 

PLCs connected to SCADA implements the lower control 

layer.  

For every control loop was implemented a simulation of 

the controlled object (sub-object). This simulation runs on 

SBC under Real-Time Operating System. The real-time 

interpreter of the generated by the program generator 

configuration runs as a RT OS task(s). The control system is 

implemented on PLCs. These PLCs and the SBCs were 

connected by real hardware interface. One of the most 

important features of the simulator is the ability to be re-

loaded with different system internal statuses (contexts). This 

makes possible the re-execution of situations which have 

happened and have been logged.  

Additional feature of the simulator is that it is able to 

operate in parallel of the real object.  It is able to work in real-

time or in fast (prediction) time for object behavior 

prediction.  

The implemented Human-Machine Interface was used for 

building operators training and as an illustration of all 

systems, control approaches, functionalities and exploitation 

boundaries.  

One of the specific problems, very hard for solving, was 

MBUS slave simulation. Because MBUS was only a carrier 

for MODBUS protocol, a MODBUS upper level simulator 

was included in the FB library. The simulator of the low-level 

pulse sensors was implemented. This simulator used I2C 

instead of MBUS to simulate data input and transfer from 

pulse devices to MODBUS module. All upper layers remain 

unchanged. 

B. Extracorporeal plasma apheresis machine simulator 

The second object that will be presented is a relatively 

small medical apparatus – an extracorporeal plasma apheresis 

machine (a kind of perfusion pump).  

Perfusion pumps are used in many different medical 

procedure. The discussed here apparatus is used for specific 

infusion or extra-thoracic circulation procedures. They requi-

re very high accuracy pressure control and flow metering and 

limiting throughout the process [17][18]. Schematics of the 

object is presented in Fig. 4. 

The system discussed here is an extension of the one 

presented in [19][20]. It operates like the left heart chamber. 

The main difference is in the fact that this system can be 

connected to a patient. It can infuse, process and return 

patient’s blood in extracorporeal loop. Thus, the control 

object is an apparatus for extracorporeal biofluids processing. 

It is based on a process analogous to the left heart chamber. 

It collects biofluid from some reservoir or blood form the 

patient and implements diastole refilling “heart’s” chamber. 

Closing input valve it starts to press the chamber. The 

collected fluid leaves it (systole) with controlled pressure or 

flow ad goes for processing in the nanofilter or chemical 

column. After this processing the blood is returned to patient. 

In case of some other biofluid processing it is collected in an 

output reservoir. A schematics of the circulationis shown in 

Fig. 4. 

Simplified state chart of one of the implemented batch 

processes is shown in Fig. 5. It is implemented as a specific 

STG with number of SGFs as separate activity. 

As before, this simulator is based on a Single Board 

Computer. The real object and the simulator have the same 

physical periphery. All simulation and exchange of analogue 

and discrete signals were implemented using Analog-to-

Digital and Digital-to-Analog converters having high resolu-

tion and precision. All pulse devices – outputs and counters 

operate in 8 ns/pulse resolution. The model of the apparatus 

includes both analogue and discrete elements. They were 

implemented using program generator library modules. A 

 

Fig. 4. Schematic diagram of an extracorporeal perfusion 

apparatus. 
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specific fast speed communication channel between the 

controller and the upper level of the simulator was 

implemented. An other fast speed channel for simulation 

control was included also. Using it the investigator can set 

different parameters of the model (low or high haematocrit, 

too much gas in the blood, etc.). Program generation and a 

component approach were used to build the simulator. This 

simulator covered near 100% of the machine behavior for 

selected control parameters. This made possible to design a 

controller meeting all security and process control 

requirements. Provided before design phase risk-analysis 

emphasized many possible problems. Most of them were built 

in the simulator. Managing them through HMI the 

investigator (and trainee in teaching process) can induce 

problems in operation and to see (or teach) how they are 

processed. This problem intrusion process is implemented by 

specially designed Complex Function Blocks. These specific 

Complex Function Blocks include inputs for external 

triggering for specific disturbances and for re-

parameterization from the upper level of the simulator. Using 

external data lines similar to ones shown in Fig. 3 this was 

implemented. 

 

 
Fig. 5. State chart diagram of a specific simulated process 

V. ANALYSES OF THE PRESENTED APPROACH FOR 

SIMULATORS IMPLEMENTATION USING PROGRAM 

GENERATION 

Analysis of the presented simulators has to include the 

amount of work to implement the simulator, similarity 

between the real object and the simulator, possibility to 

operate in real time and in simulated (slow or fast) time, 

possibility for disturbance intrusion, flexibility and adapta-

bility of the simulator to investigators needs. 

Both presented simulators have analogue and discrete 

parts, operating simultaneously and dependent to each other.  

Both have very big nonlinearities. Both have user interfaces 

introducing significant problems with operational mode 

changes. Both simulators are of type HIL but especially 

hybrid simulators. They include general-purpose hardware 

but have also specific hardware extensions. They operate in 

real-time programming mode. These simulators are based on 

the same approach – a component design using an automated 

tool, a program generator. The program generator produces 

the system configuration. This configuration is loaded and 

executed by the real-time configuration interpreter over a 

specific RT OS. 

For the plasma apheresis machine a specific problem was 

the fact that we do not have precise model of blood fluid and 

it changes under the procedure. Luckily, we do not need this 

precise model but only partial one covering changes is 

haematocrit, viscosity, filter clogging, spontaneous gas 

separation from the blood, sensors malfunction, uniqueness 

of each pump loop, etc. 

Simulators were built using ARM processor based SBCs 

and specific process periphery of the type similar as the 

object’s hardware interface. The plasma apheresis simulator 

was built using one SBC. The building simulator included 

more than ten SBCs. Connection to the control systems was 

via analogue, discrete, pulse and communication interfaces 

and has structure similar to Fig. 3.  

All simulator can operate in real time and in fast and slow 

time.  

The work for implementation of every simulator is tens of 

times lower than implementation by programming. Most of 

the elements were hard for fully numerical simulation and 

only the hybrid approach was adequate. 

Complexity analyses of the simulators and the 

corresponding control system show that they are on similar 

levels.  

Because the simulators and control systems are numerical 

in their core, it is possible to make situation analysis using 

detailed data logs for events, reactions, analogue signal 

levels, etc. More over, this makes possible to recover some 

situation starting from some moment using full data dumps. 

The possibility of the program generator to build templates 

and to instantiate them by sets of real parameters speeds up 

many times the generation of systems with big number of 

similar elements (as every component-based system).  

Comparison between simulators about modelling problems 

shows the plasma apheresis apparatus as harder even it is 

smaller. The building simulator is more time consuming 

because it had very big number of I/Os and physical elements 

or their simulations to be implemented. 

VI. CONCLUSION 

Here was presented an approach to designing and 

implementing object simulators using program generators.  

The main presented idea is to use the same toolset for the 

simulator and control system implementation. The presented 

approach enabled simultaneous design of the hybrid 

simulators and the corresponding control system. All those 

simulators are built using the PRGEN program generator and 

its Function Blocks library. Some specific hardware for 

object peripherals representation was designed according 

specific implementations. This approach reduces the invest-

ments and risks in the design and implementation phases of 

the control system design. The possibility to use implemented 

simulator for events and abnormal situations analyses makes 

them a helpful, versatile and relatively inexpensive tool with 

very big adaptability, flexibility and extensibility. The 

difference from other hybrid simulators is the ability to easily 

include parts of the real hardware together with the simulated 

one. 
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