
30 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, VOL. 71, NO. 2, YEAR 2021

https://doi.org/10.47978/TUS.2021.71.02.013

Program Generation Approach

for HIL Simulators Design

Vesselin E. Gueorguiev, Ivan E. Ivanov, Emanuil K. Markov, Desislava Georgieva

Abstract — The problem of design, implementation and

tuning of HIL simulators is rising together with systems

complexity. Many elements of the real system cannot be

simulated easily and precisely. In case of hybrid objects the

complexity arises. Very hard is implementation of mixed

simulators – having both computer elements and hardware

elements for extended object simulation. Here is presented an

approach of using program generation technique for creation of

object simulators. Using one and the same approach for

implementation of the simulator and the control system is also

discussed. Objects and control systems having different

structure are presented in this paper.

Index Terms — program generation; HIL simulation; object-

control system co-design.

I. INTRODUCTION

Design and implementation of hazardous objects or objects

generation real danger for people is a complex task. To make

this process easier and robust from many years object, control

system and object simulator are taking part simultaneously.

With the era of cheap computers for embedding, computer-

based simulators became an usual thing. Many approaches for

designing and implementing simulators are available

[1][2][3].

Very complex systems like nuclear reactors, planes of any

scale and similar are simulated form tens of years. The increasing

complexity of medical apparata makes them an object for

simulation as well. Together with human body simulators, this is

one of the most rapidly growing area of research. To use

simulator of a real system has many advantages. Comparable

with experiments with real system some of these advantages are:

avoiding some dangerous situations; tuning and optimization of

control algorithms, alarms and abnormal situations handling;

near to reality personnel training; history generation for specific

situation analyzes.

Model-in-the-Loop (MIL) [4], Hardware-in-the-Loop (HIL)

[4], Software-in-the-Loop (SIL) [5], Agent-based simulators

[6] are some of the various types of modelling techniques

today. Simulators are varying from fully numerical to mostly

physical as implementation. All simulators are built on the idea

of implementation of some model of the object. This model

(the simulator) has to exchange data with the experimental

environment or the controller.

Submittet for review 06.2021.

Vesselin Evgueniev Gueorguiev, FCST, Technical University of Sofia,

1000 Sofia, Bulgaria (e-mail: veg@tu-sofia.bg).

Ivan Evgeniev Ivanov, FA, Technical University of Sofia, 1000 Sofia,

Bulgaria (e-mail: iei@tu-sofia.bg).

Emanuil Kirilov Markov, emarkov@tu-sofia.bg

Desislava Georgieva, NBU, New Bulgarian University, Sofia, Bulgaria

(e-mail: author@ie-bas.org dvelcheva@nbu.bg).

A brief examination of the papers and on-line materials

today shows many different simulators and simulation

environments [7][8][9].

The control systems architecture can be defined from

different points of view. One of these points is how the object

is situated – if it is ‘concentrated/centralized’ and ‘distribu-

ted’ we have correspondingly centralized or distributed

control system. Discussing distributed control systems we see

how their architecture answers the object’s structure. The

object can be distributed on the level of parameters (huge

objects). It can be distributed as points of control – many

input points positioned (enough) far from each other. In all

cases, the control system includes communication subsystem

that generates delays, loses data because of different reasons,

etc. [3] With the approach, presented below, both concen-

trated and distributed object simulators, communication

network influence, operational reorganization and other

problems will be addressed.

Here will be presented the usage of program generation

technique for control systems and simulators implementa-

tions. These implementations in the area of control systems

cover wide range of aspects, mathematical and logical

elements, networking and other. The program generation

approach is one of the most used in the area of both control

systems implementation and simulators implementation.

Program generation itself has many variants – from full

code-generators (examples are ADA-based real-time systems

and MATLAB Embedded Studio) to configurators, based on

pre-compiled libraries and table-generation of the system

structure.

In many situations different sets of tools are used for

control system implementation and for simulator implemen-

tation. Here is presented an integrated approach for design

and implementation of both the control system and the

hybrid-type object simulator using one program generator.

The present paper is structured as follows:

 Section II resents how objects, object simulators and

control systems are elements of one and the same

approach;

 Section III presents a short description of the used

program generator and the formal model implemented

by it;

 Section IV presents several objects, their analyses and

how their simulators are implemented;

 Section V includes the conclusion.

GUEORGUIEV, Vesselin, et. al.: PROGRAM GENERATION APPROACH FOR HIL SIMULATORS DESIGN 31

II. BACKGROUND OF THE PRESENTED APPROACH

We mentioned before, one the main types of simulators is

the s-called “Software-in-the-loop” (SIL). This is an imple-

mentation of some mathematical and logical model that can

be connected to the controller – an other software implement-

tation.

This idea is old, widely used and implemented in many

research environments (like MATLAB/SIMULLINK and

other). Next step to make the simulator or the controller more

realistic is to include some physical interface. The idea to use

the same interface as the original object interface is relatively

new.

It became possible to use this approach only in the last

20-25 years after the jump in performance, stability, quality

and accessibility of the computer hardware. In that period

peripheral devices became enough versatile and cheap, and

industrial communication became enough fast and stable.

The structure of a complex control system for complex

object is of layered type. The object is the lowest layer. On it

is Layer I – the control systems for local sub-object or

element. Layer II is the integrating controller – for specific

subsystem or object. The Layer III is the functional control –

integral functionality/coordination. This structure is very

common to the industrial systems for complex automatizaton

from mid-80s.

In the next discussions we will assume first a single

(monolithic) object. Next will be discussed how the program

generation approach for simulators implementation expands

to distributed objects and controllers.

The implementation of computer-based simulator with real

(physical) periphery we can present as it is shown in Fig 1.

Fig. 1. General structure of a multi-layered simulator

The combination of the control system and the simulator in

one complex system can be represented with the structure

shown in Fig. 2.

According to Fig. 2, we can simulate the object in different

levels of physical detailization:

 Full simulation. He is used physical interface. It is of

the same type as that of the real object. It may include

parts of hardware of the object;

 Partial simulation. Used physical interface emulates

the real interface;

 Partial simulation with data exchange. This exchange

simulated physical connections on a base of computer

networking.

Different variants of simulation implementations are

discussed in [1]. Only those including elements of physical

hardware will be targeted here.

In any case, if some elements of Human-Machine Interface

are presented, they are included “as is”. This means that all

protocols – commands and data exchange are included in

their original versions.

When we have to simulate a distributed object, its

“distributiveness” has to be simulate also. All know types of

distributiveness have to be simulated – delays of any type,

parameter distribution (like temperature), communication

and software delays, transportation, etc. As usual, the

difficulty and complexity of this simulation is higher than that

of the control system. When we have to implement additional

“synchronization” line between the simulator and the control

system to control the simulated time flow, as shown in Fig. 2,

the complexity increase even more.

PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 2, YEAR 2021 32

Fig. 2. Combined structure “control system ↔ simulator”

III. THE PRGEN – PROGRAM GENERATOR FOR DISTRIBUTED

CONTROL SYSTEMS AND OBJECT SIMULATORS

The idea for program generation here is realized as a

program generator table type supported with extended prog-

ram library. It is adequate for both stand-alone and distributed

systems. This program generator has many version over the

time [10][11][12].

The basic idea of the control structure representation is an

extended Moore machine. It assigns specific actions for every

node of the state machine. Very specific property of this

program generator and implemented by it extended Moore

machine is the possibility to embed communication in the

state graph. This approach makes possible to generate

distributed systems operating as a “virtual mono-machine” or

as an agent-based / component-based system.

Technically control algorithms are presented as graphs.

Every designed system is described by its activities. Each

activity is implemented by separate thread. The activity

thread consists of two different graphs:

 A State Transition Graph (STG) – the description of the

general behaviour of the activity thread is done by finite

automaton modelling using graph model. The graph

representation is as the described in [13] statechart.

 A Signal Flow Graph (SFG) – a graph model

representing the signal transformation flow (the

dataflow) [18]. Similar to Simulink® data model it

consists of data paths and Function blocks. It represents

data transformation paths (mostly continuous system’s

part), decision preparation based on numerical

calculations (based on numerical calculations predicates

used in transitions of the State Transition Graph),

handles I/O and communication drivers.

A. State Transition Graphs

System behavior is represented by at least one activity

thread for each node. Every activity thread is formally

represented by its STG. This STG defines the logical

behaviour of the thread. Some specific implementations

contain a single state with an infinite loop to itself. Every STG

has an entry point (initial node). This point only shows where

the execution of the STG starts. Depending of the data

transformations associated to some state, one or several

Signal Flow Graphs can be attached to it. Every state has at

least one output transition (the exception is the END state).

Transition to the same state is normal but has to be done in

different execution intervals (e.g. no infinite loops in one

control period). Decision making for transition from one state

to the other is based on an associated to each state Binary

Decision Diagram (BDD). Values for the BDD’s predicates

are coming from the State Transition Graphs’ of the node.

The execution period for each STG is defined explicitly.

This period defines how often the graph is activated to

execute this specific state. If necessary, the execution period

can be changed in runtime, but only when this specific graph

is not in its execution mode.

To implement both synchronous (time-driven) and

asynchronous (event driven) control algorithms, two

corresponding types of state transitions are defined. A

synchronous transition means that the graph execution stops

until next activation period arises. The associated activity task

falls in sleep mode. When an asynchronous transition takes

place, the activity task moves to the following state without

stops or delays and starts its execution immediately.

B. Signal Flow Graphs

The SFG models the data flow of the system. Entry points

of the SFG are usually Function blocks (FB) implementing

some drivers – input drivers (or in some situations with

delayed output – output drivers), communication drivers or

data transmission blocks. Input data and data from previous

execution moments are propagated to some FBs. These FBs

GUEORGUIEV, Vesselin, et. al.: PROGRAM GENERATION APPROACH FOR HIL SIMULATORS DESIGN 33

make calculations (e.g. data transformations), check

constraints or conditions. Produced data are propagated to

other FBs. Thus are generated outputs of different type –

output to device drivers, communication, to the user interface,

data logging, etc.

The core of this execution control is the data flow control.

For a single activation of the SFG, each FB is activated only

once. The FB activation is function of FB’s input connections

readiness. There are two types of connections: activating and

non-activating. At the SFG’s activation point the execution

starts with FBs having only passive (non-activating) inputs.

This means that this FB is always ready for activation. An

example is input driver FB. It only generates data output but

its input is from the environment. When all “always ready”

FBs are executed the remaining FBs are checked for

readiness. If all activating inputs of some block are “ready”

this means that this block is ready for activation and it is

queued for activation. In some moment more than one FB can

be ready for activation. They are executed in the way they are

found “ready”. This does not influence final SFG results

because in that moment executed modules are independent to

each other. The SFG interpreter follows this logic and

activates all FBs in the presented manner until all FBs are

executed. In case of data loops all those paths are “non-

activating” and cannot generate infinite calculation loops in a

single execution period.

For every FB are defined three possible type of inputs.

There are defined also two possible types of outputs.

The inputs are as follows [22]:

 Link Inputs (activating or non-activating);

 Parameter Inputs;

 Internal State Inputs.

Every input has a single data source. Links to more than

one data sources (FB outputs) are impossible because this will

be ambiguity.

Function Block outputs are as follows [22]:

 Static outputs – can be a data source of unlimited

number of link inputs.

 Point to point outputs – forced target output. They

cannot be data sources for data inputs.

All inputs and outputs can be scalar, vector or matrixes.

This allows to generate complex system models.

The difference between this program generator’s model

and other is the fact that the communication subsystem is

included in the FB library. There are several Function Blocks

implementing logical and physical data exchange protocols

for internal and external data exchange. Exploiting this

specific approach one can generate stand-alone or distributed

control system or simulator as a “virtual mono-machine”.

This makes the design process much easier and free of

specific technical details. The communication bus is

implemented hidden, but observable [14][15].

The extended description of the model of the presented

program generator is available in [10][16].

IV. IMPLEMENTATION OF OBJECT SIMULATORS

In this part of the paper will be discussed the control

systems and the simulators of two different types of objects.

Both those combinations “control system-hybrid simulator”

were implemented using the presented before program

generator PRGEN and implemented by it using systems

generation approach. Both objects have analogue and discrete

(logical) behavior. Also, their sizes as number of inputs/

outputs are different. The complexity is incomparable. The

second one has a batch type of functioning.

The first object is a business building. The second one is

an apparatus for extracorporeal plasma apheresis. The

business building is huge distributed object. The medical

apparatus is a relatively small stand-alone machine.

The discussion will cover the following elements:

 how the simulator will help;

 the structure of the real object;

 problems in simulator’s program generation process

and their solving.

A. Business building simulator

The first object that will be presented is a business

building. It has restaurants, stores, several floors and other

controllable objects.

Any attempt to implement control system for such an

object without decomposition and vertical integration will fail

because of the very huge number of control points, feedback

signals, distributiveness in both parameters and geography,

unobservable influences between system elements, etc. There

are other reasons, which are as follows:

 Only limited experiments with the real equipment are

possible. Collection of real data is expensive. After the

object’s exploitation beginning many experiments are

impossible (because they need to collect data, property

of the utility companies – water, heating, electricity);

 experimenting some dangerous scenarios is impos-

sible after the official start of the object exploitation;

 periodic training of the personnel is needed;

 an experimental test-bed for analyses of specific

situations is needed.

A list of some elements of control are:

 total electricity load measuring (and control);

 for every separate object – reading heat, water and

electricity metering devices;

 heating and other equipment control;

 control for abnormal situations and functioning;

 unbreakable system log;

 etc.

Thousands sensors with different level of complexity were

installed in the building. Hundreds of actuators, switchers and

intelligent output devices had to be controlled. So complex

object has multi-layered requirements for exploitation.

All of these technical, functional and security requirements

needed a multi-layered control system. Without of an appro-

priate simulation the testing, tuning and normal exploitation

of this control system was impossible.

 System decomposition was provided first on the level of

separate sub-objects. According to their similarity several

classes were built. A single class template for every specific

class was generated (PRGEN provides a possibility to

generate templates with different levels of complexity and to

store them as an extension to the basic FB library). These

PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 2, YEAR 2021 34

templates were instantiated for every sub-object. This is a

normal object-oriented technique but it is not very common

in this area. The Fig. 2 represents an approximation of the

final structure. The size of the final simulator had to have two

upper levels for simulation of integrated functions; three

logical low-level configurations; seven computational threads

with three thousand function blocks included. This size

makes the process very hard. To avoid this the size of the

simulator was reduces ten times (all similar elements were

presented in reduced quantity). Nevertheless, it included all

computational and logical structures.

Additionally, Function Blocks library was extended with

blocks simulating human streams and other specifics.

Specific automata for abnormal situations were designed.

They include malfunctions injectors in the electricity and

water supply simulation, different behavioural scenarios and

other. All simulation modules were implemented using

ARM-based Single-Board Computers (SBC). They had the

required physical periphery and communication.

As a conclusion we can say that the controlled object is a

heterogeneous distributed discrete-event system. It has huge

number of analogue inputs and outputs. It also has several

sub-objects of analogue type of functionality. Many input and

output devices communicate to the controllers using MBUS

physical layer and MODBUS protocol over it. The structure

of the MODBUS/MBUS connections is shown in Fig. 3.

The upper control layer is implemented using SCADA

system running on an industrial PC computer. Number of

PLCs connected to SCADA implements the lower control

layer.

For every control loop was implemented a simulation of

the controlled object (sub-object). This simulation runs on

SBC under Real-Time Operating System. The real-time

interpreter of the generated by the program generator

configuration runs as a RT OS task(s). The control system is

implemented on PLCs. These PLCs and the SBCs were

connected by real hardware interface. One of the most

important features of the simulator is the ability to be re-

loaded with different system internal statuses (contexts). This

makes possible the re-execution of situations which have

happened and have been logged.

Additional feature of the simulator is that it is able to

operate in parallel of the real object. It is able to work in real-

time or in fast (prediction) time for object behavior

prediction.

The implemented Human-Machine Interface was used for

building operators training and as an illustration of all

systems, control approaches, functionalities and exploitation

boundaries.

One of the specific problems, very hard for solving, was

MBUS slave simulation. Because MBUS was only a carrier

for MODBUS protocol, a MODBUS upper level simulator

was included in the FB library. The simulator of the low-level

pulse sensors was implemented. This simulator used I2C

instead of MBUS to simulate data input and transfer from

pulse devices to MODBUS module. All upper layers remain

unchanged.

B. Extracorporeal plasma apheresis machine simulator

The second object that will be presented is a relatively

small medical apparatus – an extracorporeal plasma apheresis

machine (a kind of perfusion pump).

Perfusion pumps are used in many different medical

procedure. The discussed here apparatus is used for specific

infusion or extra-thoracic circulation procedures. They requi-

re very high accuracy pressure control and flow metering and

limiting throughout the process [17][18]. Schematics of the

object is presented in Fig. 4.

The system discussed here is an extension of the one

presented in [19][20]. It operates like the left heart chamber.

The main difference is in the fact that this system can be

connected to a patient. It can infuse, process and return

patient’s blood in extracorporeal loop. Thus, the control

object is an apparatus for extracorporeal biofluids processing.

It is based on a process analogous to the left heart chamber.

It collects biofluid from some reservoir or blood form the

patient and implements diastole refilling “heart’s” chamber.

Closing input valve it starts to press the chamber. The

collected fluid leaves it (systole) with controlled pressure or

flow ad goes for processing in the nanofilter or chemical

column. After this processing the blood is returned to patient.

In case of some other biofluid processing it is collected in an

output reservoir. A schematics of the circulationis shown in

Fig. 4.

Simplified state chart of one of the implemented batch

processes is shown in Fig. 5. It is implemented as a specific

STG with number of SGFs as separate activity.

As before, this simulator is based on a Single Board

Computer. The real object and the simulator have the same

physical periphery. All simulation and exchange of analogue

and discrete signals were implemented using Analog-to-

Digital and Digital-to-Analog converters having high resolu-

tion and precision. All pulse devices – outputs and counters

operate in 8 ns/pulse resolution. The model of the apparatus

includes both analogue and discrete elements. They were

implemented using program generator library modules. A

Fig. 4. Schematic diagram of an extracorporeal perfusion

apparatus.

E
x
tra

c
te

d

e
le

m
e
n

ts

Input

valve
Output

valve

Piston

camera

Pressure
sensor 1

Pressure
sensor 2

Processin
g colum

nP
atie

n
t

Fig. 3. MBUS to MODBUS connection

In
te

gr
at

ed
 p

ul
se

se
ns

or
 w

ith
 M

BU
S

In
te

gr
at

ed
 p

ul
se

se
ns

or
 w

ith
 M

BU
S

In
te

gr
at

ed
 p

ul
se

se
ns

or
 w

ith
 M

BU
S

In
te

gr
at

ed
 p

ul
se

se
ns

or
 w

ith
 M

BU
S

MBUS concentrator

MODBUS to upper level

GUEORGUIEV, Vesselin, et. al.: PROGRAM GENERATION APPROACH FOR HIL SIMULATORS DESIGN 35

specific fast speed communication channel between the

controller and the upper level of the simulator was

implemented. An other fast speed channel for simulation

control was included also. Using it the investigator can set

different parameters of the model (low or high haematocrit,

too much gas in the blood, etc.). Program generation and a

component approach were used to build the simulator. This

simulator covered near 100% of the machine behavior for

selected control parameters. This made possible to design a

controller meeting all security and process control

requirements. Provided before design phase risk-analysis

emphasized many possible problems. Most of them were built

in the simulator. Managing them through HMI the

investigator (and trainee in teaching process) can induce

problems in operation and to see (or teach) how they are

processed. This problem intrusion process is implemented by

specially designed Complex Function Blocks. These specific

Complex Function Blocks include inputs for external

triggering for specific disturbances and for re-

parameterization from the upper level of the simulator. Using

external data lines similar to ones shown in Fig. 3 this was

implemented.

Fig. 5. State chart diagram of a specific simulated process

V. ANALYSES OF THE PRESENTED APPROACH FOR

SIMULATORS IMPLEMENTATION USING PROGRAM

GENERATION

Analysis of the presented simulators has to include the

amount of work to implement the simulator, similarity

between the real object and the simulator, possibility to

operate in real time and in simulated (slow or fast) time,

possibility for disturbance intrusion, flexibility and adapta-

bility of the simulator to investigators needs.

Both presented simulators have analogue and discrete

parts, operating simultaneously and dependent to each other.

Both have very big nonlinearities. Both have user interfaces

introducing significant problems with operational mode

changes. Both simulators are of type HIL but especially

hybrid simulators. They include general-purpose hardware

but have also specific hardware extensions. They operate in

real-time programming mode. These simulators are based on

the same approach – a component design using an automated

tool, a program generator. The program generator produces

the system configuration. This configuration is loaded and

executed by the real-time configuration interpreter over a

specific RT OS.

For the plasma apheresis machine a specific problem was

the fact that we do not have precise model of blood fluid and

it changes under the procedure. Luckily, we do not need this

precise model but only partial one covering changes is

haematocrit, viscosity, filter clogging, spontaneous gas

separation from the blood, sensors malfunction, uniqueness

of each pump loop, etc.

Simulators were built using ARM processor based SBCs

and specific process periphery of the type similar as the

object’s hardware interface. The plasma apheresis simulator

was built using one SBC. The building simulator included

more than ten SBCs. Connection to the control systems was

via analogue, discrete, pulse and communication interfaces

and has structure similar to Fig. 3.

All simulator can operate in real time and in fast and slow

time.

The work for implementation of every simulator is tens of

times lower than implementation by programming. Most of

the elements were hard for fully numerical simulation and

only the hybrid approach was adequate.

Complexity analyses of the simulators and the

corresponding control system show that they are on similar

levels.

Because the simulators and control systems are numerical

in their core, it is possible to make situation analysis using

detailed data logs for events, reactions, analogue signal

levels, etc. More over, this makes possible to recover some

situation starting from some moment using full data dumps.

The possibility of the program generator to build templates

and to instantiate them by sets of real parameters speeds up

many times the generation of systems with big number of

similar elements (as every component-based system).

Comparison between simulators about modelling problems

shows the plasma apheresis apparatus as harder even it is

smaller. The building simulator is more time consuming

because it had very big number of I/Os and physical elements

or their simulations to be implemented.

VI. CONCLUSION

Here was presented an approach to designing and

implementing object simulators using program generators.

The main presented idea is to use the same toolset for the

simulator and control system implementation. The presented

approach enabled simultaneous design of the hybrid

simulators and the corresponding control system. All those

simulators are built using the PRGEN program generator and

its Function Blocks library. Some specific hardware for

object peripherals representation was designed according

specific implementations. This approach reduces the invest-

ments and risks in the design and implementation phases of

the control system design. The possibility to use implemented

simulator for events and abnormal situations analyses makes

them a helpful, versatile and relatively inexpensive tool with

very big adaptability, flexibility and extensibility. The

difference from other hybrid simulators is the ability to easily

include parts of the real hardware together with the simulated

one.

PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 2, YEAR 2021 36

REFERENCES

[1] J. A. Carrasco and S. Dormido, Analysis of the use of industrial control
systems in simulators: State of the art and basic guidelines, ISA
Transactions, Volume 45, no. 1, January 2006, pp. 295-312,
https://doi.org/10.1016/S0019-0578(07)60196-7

[2] A. Negahban and J. S. Smith, Simulation for manufacturing system
design and operation: Literature review and analysis, Journal of
Manufacturing Systems, Volume 33, Issue 2, April 2014, pp. 241–261,
https://doi.org/10.1016/j.jmsy.2013.12.007

[3] W. Li, X. Zhang, and H. Li, Co-simulation platforms for co-design of
networked control systems: An overview, Control Engineering
Practice vol.23, 2014, pp. 44–56,
https://doi.org/10.1016/j.conengprac.2013.10.010

[4] J. A. Ledin, Hardware-in-the-Loop Simulation, Embedded Systems
Programming, Feb. 1999, pp. 42-60.

[5] MathWorks, Generate and verify embedded code for prototyping or
production, http://www.mathworks.com/embedded-code-generation/,
[last accessed: 25.07.2021].

[6] The Rapid Automotive Performance Simulator (RAPTOR),
http://www.swri.org/4org/d03/vehsys/advveh/raptor/default.htm [last
accessed: 25.07.2021].

[7] C. Macal and M. J. North. Agent-based modeling and simulation. In
Proceedings of the 2009 Winter Simulation Conference, ed. M. D.
Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls,
Piscataway, New Jersey: Institute of Electrical and Electronic Engi-
neers, Inc., 2009, pp. 86-98,
https://doi.org/10.1109/WSC.2009.5429318

[8] The Rapid Automotive Performance Simulator (RAPTOR),
http://www.swri.org/4org/d03/vehsys/advveh/raptor/default.htm [last
accessed: 08.08.2014].

[9] M. Pasquier, M. Duoba, and A. Rousseau, Validating Simulation Tools

for Vehicle System Studies Using Advanced Control and Testing

Procedure, http: //www.autonomie.net/docs/6 - papers/validation/

validating_simulation_tools.pdf [last accessed: 25.07.2021].

[10] IAEA, Use of control room simulators for training of nuclear power
plant personnel, Vienna, 2004, IAEA-TECDOC-1411, ISBN 92–0–
110604–1.

[11] C. K. Angelov and I. E. Ivanov, “Formal Specification of Distributed
Computer Control Systems (DCCS). Specification of DCCS Sub-
systems and Subsystem Interactions”. Proc. of the International

Conference “Automation & Informatics’2001”, May 30 - June 2, 2001,
Sofia, Bulgaria, vol. 1, pp. 41-48.

[12] I. E. Ivanov and K. Filipova, “Integrated scheduling of heterogeneous
CAN and Ethernet-based hard Real-Time network”, Proc. of IEEE
spring seminar 27th ISSE, Annual School Lectures, Bulgaria, 2004,vol.
24, pp.481-485

[13] I. E. Ivanov and V. Georgiev, “Formal models for system design”,
Proc. of IEEE spring seminar 27th ISSE, Annual School Lectures,
Bulgaria, 2004,vol. 24, pp. 564-568

[14] D. Harel, “Statecharts: A visual formalism for complex systems”
Science of Computer Programming 8 (1987), pp. 231-274,
https://doi.org/10.1016/0167-6423(87)90035-9

[15] C. K. Angelov, I. E. Ivanov, and A. A. Bozhilov. Transparent Real-
Time Communication in Distributed Computer Control Systems. Proc.
of the International Conference “Automation & Informatics’2000”,
Oct. 2000, Sofia, Bulgaria, vol.1, pp. 1-4

[16] A. Dimov and I. E. Ivanov, Towards development of adaptive
embedded software systems, Proceedings of TU Sofia, vol. 62, book.1,
2012, pp. 133-140

[17] I. E. Ivanov, “Control Programs Generation Based on Component
Specifications”, PhD thesis, 2005, Sofia, (in Bulgarian)

[18] Longo, G. A., Mancin, S., Righetti, G., Zilio, C., "Flow dynamic and
energetic assessment of a commercial micro-pump for a portab-
le/wearable artificial kidney: Peristaltic vs. diaphragm pumps",
Thermal Science and Engineering Progress, Vol 3, pp 31-36, 2017,
ISSN 2451-9049, https://doi.org/10.1016/j.tsep.2017.03.006

[19] Kirk, R., Dipchand, A. I., “Continuous donor perfusion for heart
preservation”, Progress in Pediatric Cardiology, Vol 46, pp 15-18,
2017,ISSN 1058-9813,https://doi.org/10.1016/j.ppedcard.2017.07.007

[20] J. Kralev, B. Ivanov, I. Evg. Ivanov, A. Yonchev, D. Georgieva, An
approach for perfusion pump control for nanofiltering, Proceedings of
the Technical University of Sofia, Volume 67, Issue 2, 2017

[21] Ivanov B., A model of extracorporeal perfusion pump, 7th
Mediterranean Conference on Embedded Computing MECO’2018,
Budva, Montenegro, June, 2018, pp. 523-526, ISBN 978-1-5386-5682-
2, IEEE Catalog Number: CFP18397-PRT

[22] Markov E., I. Evg. Ivanov, V. Gueorguiev, Program Generator Archi-
tecture, DESE 2011, Dubai, UAE, December 2011,
https://doi.org/10.1109/DeSE.2011.104

https://doi.org/10.1016/S0019-0578(07)60196-7
https://doi.org/10.1016/j.jmsy.2013.12.007
https://doi.org/10.1016/j.conengprac.2013.10.010
https://doi.org/10.1109/WSC.2009.5429318
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/j.tsep.2017.03.006
https://doi.org/10.1016/j.ppedcard.2017.07.007
https://doi.org/10.1109/DeSE.2011.104

