
PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, VOL. 71, NO. 2, YEAR 2021 

https://doi.org/10.47978/TUS.2021.71.02.007 

1 

 

SIL Simulation of Model-Free Method  

for Improving of Time Varying Dynamic 

Measurements 
 

Miroslava Baraharska, Tsonyo Slavov, Ivan Markovsky 

 

 
Abstract—In this paper, a SIL simulation of developed  

model-free method for time varying dynamic measurements in 

control system is presented. As an example, the dynamic mass-

measurement process is examined. The method is based on the 

on-line estimation of time varying parameters of linear 

regressive model by recursive least square method with cons-

tant trace of covariance matrix. The model order selection is 

performed by Akaike’s information criteria. The performance 

of method with respect to the variance of measurement noise is 

empirically tested by simulation experiments.  For the aim of 

comparison, the Kalman filter for estimation of unknown 

measurement is designed. The simulation results show the 

advantage of model-free method 

 
Index Terms — Dynamic measurements, Model-free method 

for dynamic measurements, Kalman filter, SIL simulation 

I. INTRODUCTION 

Speed and accuracy of control variable measurement in 

control systems are some of the limitations that require 

further examination. To overcome these limitations, data 

measurements can be considered as dynamic processes and 

sensors as dynamic systems. With this approach, the 

problem of improving dynamic measurements can be 

formulated as unknown input signal estimation of a dynamic 

system. In this paper we observe one very common example 

in real applications – the process of mass measurement. In 

literature, many methods for improving measurements 

dynamics have been suggested. Depending on the quantity 

of known prior information, they are divided in two types – 

methods, which are based on a model of the measurement 

process and methods, which are not based on the model 

(model-free methods). The first type are usually based on 

compensators [1] or Kalman filtering [2]. Usually a com-

pensator with inverted dynamics of the sensor is designed. 

The main idea is that an estimation of the unknown input 

signal can be obtained as convolution of the impulse 

response of the compensator and the measured transient 

response of the sensor [1]. Methods, based on compensators 

with recursive estimation of parameters can be found in [3], 

methods, based on IIR and FIR filtering in [4,5]. The second 

type of methods do not use model of the measurement 

process and the missing information is acquired in real time. 

These methods are usually based on neural networks, 

identification, adaptive filtration etc. [6]. In [7] it is sugges-

ted and in [8] is studied a method for improving the dynamic 

measurements, based on identification with the standard 

recursive least squares method. A comparison of this 

method and a standard Kalman filer is presented in [2]. We 

must note that the methods, which do not use a model are 

more realistic, since it is rarely the case that an accurate 

enough model of the measurement process exists. Further-

more, in the case of mass measurement the model parame-

ters depend on the mass of the measured substance or form, 

i.e. it depends of the unknown quantity. Most of the existing 

methods based on identification estimate constant quantity 

measurements. In control systems the measured quantity is 

time-varying. This motivates the authors to extend the 

method proposed in [7], for the case of time-varying 

quantity.  

In this paper, a method for improved dynamic measure-

ments of time-varying quantity, without using a model of 

the measurement process, is suggested. This method is 

based on real time identification of a non-stationary 

dynamic system with a linear regressive model. Initially we 

choose structure parameters of the model based on Akaike 

information criterion. Modification of the recursive least 

squares is used. This modification provides constant trace of 

the estimated parameters covariance matrix, which keeps 

sensitivity of the method to changes in the measured 

quantity. The method is examined with different levels of 

measurement noise. The effect of the model order on the 

accuracy and speed of estimation has also been examined. A 

comparison to the method based on standard Kalman filter 

has been made. Obtained results show the advantage of the 

suggested method, as the dynamic measurement of time-

varying mass is improved. In order to test applicability of 

the suggested algorithm of model free method for improved 

dynamic measurements, it is implemented in Schneider 

Electric PLC M251 and SIL simulation is performed. The 

results from comparison between Simulink simulation and 

SIL simulation are presented. 

II. IMPROVED TIME-VARYING QUANTITY MEASUREMENT 

METHOD, BASED ON RECURSIVE IDENTIFICATION 

Let us denote the DC-gain of the sensor with W , 

therefore the sensor output signal will be as follows  

transienty Wu y v   ,       (1) 

where u  is the unknown value of the measured quantity, 

transient
y  is the sensor transient response, which indicates its 

dynamics and can be presented as the output of an autono-

mous system and v  is white Gaussian noise, modelling the 

stochastic measurement error [2]. 

In order to solve the problem estimation of unknown 

input signal through identification, we have to obtain an 

regression model from (1). The autonomous system is 
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modelled with the model  

1 2( ) ( ) ( 1) ...

( ) ( )

transient

n

y k a y k a y k

a y k n e k

      

   
,  (2) 

where , 1,2,...,
i

a i n  are the model parameters and 

( ) ( ) ( 1)y k y k y k           (3) 

( )e k  is residual error of the model in the form of zero mean 

white Gaussian noise, which displays the inconsistency of 

the chosen model and the examined process, as well as the 

impact of immeasurable factors to the observations.  We 

must note that in model (2) is used the computable signal 

( )y k  instead of previous values of the immeasurable 

signal ( )transienty k . Hence the estimation problem can be 

solved with a linear estimator and the DC-gain Gu  is 

eliminated from the model of autonomous system. From (2) 

we obtain the measurement model 

1 2( ) ( ) ( 1) ...

( ) ( )n

y k Wu a y k a y k

a y k n e k

      

   
,   (4) 

Noting that 

 

 1 2

( ) ( ) ( 1) ... ( )

...

T

T

n

k W y k y k y k n

u a a a





     


,  (5) 

equation (4) can be transformed into the linear regression 

model 

( ) ( ) ( )
Т

y k k e k          (6) 

The model (6) for the whole measurement interval 
*

,  1,  2,  ...,  k k k k N    transforms into 
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. 

 (7) 

Ideally, if there is no measurement noise and the model 

structure is accurate, the residual error ( )E k  from equation 

(7) will be eliminated and the unknown parameters   will 

be obtained after 1n  measurements of the output signal 

through the expression  
1
Y 

            (8) 

In practice, measurement noise is always present and 

there is difference between the model of sensor dynamics 

and the actual sensor dynamics. Therefore, in order to obtain 

the parameters in (7) least squares method is used, where the 

squared residual error is minimized for the whole observa-

tion interval  

T
J Е Е           (9) 

It is well known that in order to obtain good filtering of 

the random component in the model, it is necessary to carry 

out much more measurements than the model order, e.g. 
*

1N n  . Therefore parameter estimates are obtained with 

the least squares method by 

 1ˆ ( )T TY      .       (10) 

It is seen that estimates exist if the matrix T
   is 

nonsingular. This is ensured if there is no linear combination 

in the regressors of the matrix, i.e. in the model there are no 

excessive regressors and no data, obtained from an 

experiment with constantly exciting signal of order no less 

than 1n . In this adaptation, the least squares method 

process accumulates data 
*

N in one computation and thus 

it is not suitable for improving measurement dynamics, 

since it is not appropriate for real time analysis. When 

estimating in real time, similar to the standard least squares 

method is the recursive least squares method, which is 

described by equations   

0

( 1) ( )
( )

( ) ( 1) ( ) 1

ˆ ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( ) ( 1)],  (0)

( ) ( 1) ( ) ( ) ( 1), (0) , 0

T

T

T

P k k
G k

k P k k

k k G k y k k k

P k P k G k k P k P I



 

     

  




 

     

     

,(11) 

where ( )P k  is the covariance estimations matrix and ( )G k  

is a DC-gain vector.  The algorithm (11) is suitable for a 

stationary system parameter estimation.  

When estimating time-varying quantities, it is suggested 

to implement a modifications of the recursive least squares 

with time-varying forget factor which provides constant 

trace of the covariance matrix ( )P k  [9, 10, 11]. The 

equation for updating the covariance matrix in the recursive 

least squares algorithm with constant forgetting factor is as 

follows 

0

1
( ) ( 1) ( ) ( ) ( 1) ,  (0)

T
P k P k G k k P k P P


        (12) 

Considering the trace of matrix ( )P k  and multiplying 

(12) by   we obtain 

 

   

( ) ( 1) ( ) ( ) ( 1)

( ) ( 1) ( ) ( ) ( 1)

T

T

tr P k tr P k G k k P k

tr P k tr P k tr G k k P k

 

 

     

     

. (13) 

Noting that    ( ) ( 1)tr P k tr P k   from (13) we obtain 

 

( ) ( ) ( 1)
1

( 1)

Ttr G k k P k

tr P k




  
 


. .          (14) 

After placing ( )G k  from (11) into (14) we obtain 

 

( 1) ( ) ( ) ( 1)1
1

( 1) ( ) ( 1) ( ) 1

T

T

tr P k k k P k

tr P k k P k k

 


 

   
 

  
. (15) 

The product in the numerator of the second addend (15) is 

a scalar, which brings us to the final form of the forgetting 

factor, providing constant covariance matrix trace 
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 
1 ( ) ( 1) ( 1) ( )

1
( 1) ( ) ( 1) ( ) 1

T

T

k P k P k k

tr P k k P k k

 


 

 
 

  
.   (16) 

Finally, to estimate the unknown quantity we suggest to 

use the algorithm (11), with model (5), (6), and for updating 

of the covariance matrix equation (12) to be used instead of 

covariance matrix equation from (11). The forgetting factor 

  is determined by equation (16). Algorithm starts with 

zero initial conditions for estimates and initial value of the 

covariance matrix 0
(0)P P . Since the covariance matrix 

trace is constant, higher values of 
0

P  will provide better 

sensitivity to changes in the measured quantity, but also 

bigger estimates covariation. The opposite – lower values of 

0
P  will provide better results for the estimates, but slower 

tracking when changes in the process occur. Later on the 

impact of different parameters as model order and 

measurement noise to the modified recursive least squares 

method of variance will be examined. Fig. 1 presents a 

scheme of the measurement process and estimation of the 

unknown quantity through the modified recursive least 

squares 

Sensor 

dynamics

Estimator

Measurement

Estimated 

measurement

Input data Sensor output

( )y k

ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( ) ( 1)]Tk k G k y k k k       

( ) ( ) ( 1)y k y k y k   

( ) ( ) ( )transienty k A y k e k  

transienty Gu y v  

 

Fig.1. Scheme of the measurement process and estimation of the unknown 

quantity through the modified recursive least squares. 

III. KALMAN FILTER FOR IMPROVING DYNAMIC 

MEASUREMENTS 

For purpose of comparison, a Kalman filter for improving 

dynamic measurements of mass measurement is designed 

[2]. The measurement process dynamics is described by 

2

2
( ) ,

d y dy
M m cy d Mg

dtdt
         (17) 

where 2
9.81 /g m s  is the gravitational constant, 1c   is 

coefficient of elasticity, 1d   is the damping coefficient, 

1m kg  is the platform mass, where the measured object is 

placed and M is the unknown object mass. The Kalman filter 

estimates the mass М, based on the model (17). Model (17) 

is presented in state-space form 

x Ax Bu

y Cx v

 

 
 ,         (18) 

 
       0         1        0

 , , 1   0 , 0A B C Dc d g

M m M m M m

   
      
     
        

(19) 

where x  is the vector of states, y  is the sensor output and 

u  is the unknown object mass. From (18) it is obvious that 

the measurement dynamics depends on the measured 

quantity, which makes a standard optimal Kalman filter 

design complicated. When forming matrices A  and B  for 

the design of standard Kalman filter, an average value of 

150M kg  will be used. The process v  is zero-mean 

white Gaussian noise with covariance 
v

V . We use v  to mo-

del the random sensor error. In order to estimate the unk-

nown input signal, model (18) is extended with an additional 

state .
u

x u  For the extended model we obtain 

u

u

x

x Ax Bx

y Cx v



 

 

,         (19) 

where   is white Gaussian noise with covariance V . If we 

input the vector of states in (19) 
1 2[     ]

T

ux x x x  we 

obtain 

x Ax B

y Cx v

 

 
,             (20) 

where   

 

   0    1    0
0

,    0 ,   

1
   0    0    1

  1 0 0

c d g
A B

M m M m M m

C

 
  
      
    
    

 



 

We use (20) to design Kalman filter with noise covariance

10,  0.1
v

V V   . Therefore, we obtain the state estimate x̂  

from 

ˆ ˆ( )f fx A K C x K y   ,       (21) 

where the Kalman filter coefficient 
fK  is defined by  

1T

f e vK D C V  ,        (22) 

and the error covariance
e

D  is the positive definite solution 

of algebraic Riccati equation 

1
0

Т T T

e e e v e nАD D А D C V CD BV B


    .   (23) 

IV. EXPERIMENTAL RESULTS 

A set of time-varying mass estimating simulation 

experiments have been performed with the proposed 

modified dynamic measurement method. All of the 

experiments are conducted with identical initial conditions 

of the covariance estimations matrix  

(0)P nI ,         (23) 

where n is the model estimation order. The noise in 

measurement impact on the estimates quality has been 

studied. A set of experiments with noise covariance v  of 0, 

0.01 and 0.5 have been conducted. The noise variance are 

chosen according to model sensor random error. Fig. 2-4 

illustrate sensor measurements, mass estimation results with 

the proposed method for model of order n=3 and mass 

estimation results with the standard Kalman filter with the 

three corresponding noise variances. As expected, regard-

less of noise variance, the Kalman filter rapidly estimates 

unknown mass only when actual mass is 150kg, which is the 

value that is used in the Kalman filter design, based on 

model (20). With the proposed method, we obtain several 
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times better results than the sensor measurement for 

experiments without noise and with noise covariance of 0.01 

(The exact mass value is obtained in 800ms with the sensor 

and in 170ms with the model-free method). For mass value 

of 150kg the Kalman filter produces the best result, 

estimating the unknown quantity for only 20ms.  

 

Fig. 2. Results with model of 3rd order and noise covariance 0
v

D   

 

Fig. 3. Results with model of 3rd order and noise covariance 0.01
v

D   

 

Fig. 4. Results with model of 3rd order and noise covariance 0.5
v

D   

The reason for the poor results obtained from the model-

free method when the noise variance increases is that the 

model is of insufficient order. This hypothesis is confirmed 

by the results shown in fig. 5, where we observe measured 

mass by the sensor and output signals of estimated 

autoregressive models of 5th and 20th orders.  

In fig. 5 we find that the sensor measured signal matches 

perfectly to the estimated model of 20th order. In order to 

make an adequate decision on the estimated model order and 

achieve reasonable computation complexity and quality of 

the model, we use the Akaike information criterion. 

dimˆ ˆ( ) 1 2 ( )mJ J
N


 

 
  
 

,     (24) 

where ˆ( ) TJ e e   is the loss function and e  is the 

residuals vector, computed based on the estimated 

parameters. The criterion (24) is presented on fig. 6 for 

model orders varying from 5 to 40. After model order 17 the 

criterion decrease is insignificant and the minimum is at 

order 25. In order to achieve compromise between 

complexity and accuracy of the model, following some 

experiments, we have determined that model of order 20 

produces sufficiently accurate and fast estimation. 

 
Fig. 5. Mass measured by the sensor and estimated mass with models of 3th 

and 20th orders 

 

Fig.6. Akaike information criterion for 5th to 40th model order 

Fig. 7 shows estimation results for models with orders 

from 5th and 20th and measurement noise covariance 0.05. 

When the mass is time-varying with model order 20, the 

suggested method estimates accurately the unknown mass 

for 20ms, meaning that we obtain 40 times better results 

than the sensor measurement. Furthermore, this result is 

almost the same as the results with Kalman filter, designed 

based on the exact model of the measuring process. 
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Fig. 7. Results for estimated model of order 5th and 20th 

V. SIL SIMULATION OF THE SUGGESTED METHODS  

To validate the proposed model-free estimation method in 

conditions close to the real ones, we have implemented 

algorithms in a software-in-the-loop simulation using the 

programmable logic controller software SoMachine. Table 1 

presents the realization of the algorithm maintaining 

constant trace of the covariance matrix with the prog-

ramming language Structured Text. Simulation results are 

presented using Matlab in fig. 8 to fig.11. 

 

Fig. 8. Results from the modified estimation method maintaining constant 

trace of the covariance matrix 

 

Fig. 9. Results from Kalman filter estimation, designed based  

on the actual value of the mass 

 

Fig. 10. Trace of the covariance matrix with suggested method 

 

Fig. 11. Trace of covariance matrix with Kalman filter estimation 

TABLE I 

SOURCE CODE OF PROPOSED ALGORITHM 
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In fig. 8 and fig. 8 there is a delay in the SoMachine 

simulation, which is caused by the fact that when conduc-

ting an experiment in real time in the beginning there is no 

measurement information and therefore an estimation 

cannot be computed right away. In order to obtain initial 

estimations, we have to accumulate as many measurements 

as the selected estimation model order. 

VI. CONCLUSION 

This paper proposes a modified method improving 

measurements in dynamic systems, without using model of 

the process (model-free method). The method is derived 

from an existing method and is further developed for time-

varying quantity estimation. A mass measurement process in 

control system is introduced as an example. The proposed 

method is compared to the standard Kalman filter, designed 

based on measuring process model with an average mass 

value. As approach to reduce the impact of noise to the 

performance of estimated quantity we propose to estimate 

the regressive model of higher order. The appropriate model 

order is chosen, based on the Akaike information criterion. 

The properties of the proposed method have been examined 

for three different measurement noise variance levels. 

Obtained results show the advantages of the modified 

improving measurement method even when using sensors 

with lower accuracy class. The SIL simulation results appro-

ved workability of suggested method and developed 

software for conventional programmable logic controller. 
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