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Abstract — In the last twenty years, the neural networks are 

under intensive analyses. One of the main ideas of the scientists 

is to partially replace some of their CMOS-based elements by 

memristors. Memristors are preferred for application due to 

their memory effect, low power consumption and nano-size 

dimensions. The purpose of this paper is to propose an analysis 

of a feed-forward neural network with HfO2 memristor-based 

synapses for XOR logic function emulation. The considered 

network uses synaptic devices with a memristor, resistor and a 

differential amplifier. The proposed synaptic scheme can ensure 

positive, zero and negative synaptic weights. For the neural 

network analysis several classical and modified HfO2 memristor 

models are used. The network is successfully tested in LTSPICE. 

The occurrence of convergence problems is reduced by 

replacing the standard step function in the models by its smooth 

and differentiable analogue. The capability of the modified 

models for operation in complex schemes is proven. 

Index Terms — neural network, memristor synapse, hafnium 

dioxide, memristor model, step-like logistic function 

I. INTRODUCTION 

The artificial neural networks are under intensive analysis 

in the recent fifteen years owing to their widespread 

applications in pattern recognition, signal processing, object 

classification and many others [1], [2], [3]. Both software and 

hardware realizations are used in many technical and 

scientific fields [2], [4]. The main constructive elements of 

the neural networks – synapses, neurons, and axons, are 

realized in hardware based on the present Complementary 

Metal Oxide Semiconductor (CMOS) technology [5], [6]. 

One of the main trends existing in the last several years is to 

replace some of the CMOS-based elements in the neural 

networks by memristors [6]. The memristor is a two-terminal 

passive nonlinear element with a memory effect. It retains its 

instantaneous resistance after turning the power sources off 

[7], [8]. It is predicted by Chua in 1971 [9] and its first 

physical prototype is realized by Williams in the Hewlett-

Packard research labs [8]. Memristors are mainly based on 

transition metal oxides as titanium dioxide [8], hafnium 

dioxide [10], [11], [12], tantalum oxide and others [13], [14].  

The memristors have many promising properties – memory 

effect, non-volatility, low power consumption, energy 

efficiency, nano-scale dimensions, and a sound compatibility 

with the present CMOS integrated circuits technology [15], 

[16], [17], [18]. In the scientific literature several variants of 

memristor-based synapses exist [5], [17], [19], [20], [21]. 
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There are synaptic circuits with one, two and four memristors 

realized using bridge topology [21], [22], [23], [24]. An 

advantage of the bridge schemes is their possibility for 

realization of positive, zero and negative synaptic weights. 

Another solution is a single-memristor synapse, and a scheme 

based on anti-series memristor circuit with two memristors 

[22], [23]. A synaptic circuit with two memristors and 

operational amplifier is also existing [24], [25]. The main 

purpose of the present paper is to propose a single memristor 

synaptic scheme having the possibility to realize positive, 

zero and negative synaptic weights [26]. In this sense a 

schematic with a memristor and resistor based on a current 

divider and a comparator with operational amplifier in 

LTSPICE is proposed in the present paper. The considered 

memristor-based synapse is successfully applied in a simple 

neural network for XOR function emulation. 

The rest of the paper is organized as follows. In the next 

section a description of several commonly used standard and 

modified hafnium dioxide memristor models is made. Section 

3 represents the proposed memristor-based synaptic circuit. 

The analysis of the considered neural network for XOR 

emulation is presented in Section 4. The final Section 5 

concludes the paper. 

II. HAFNIUM DIOXIDE MEMRISTOR MODELS – A REVIEW 

The hafnium dioxide memristor nanostructure is presented 

in Fig. 1. It has two terminals – top electrode and bottom 

electrode, respectively [10], [15]. The length of the memristor 

is denoted by D. The top region is doped by oxygen 

vacancies, and it has a length denoted by w. 

 

Fig. 1. Hafnium dioxide based memristor nanostructure. 

The state variable x of the memristor element is defined as 

a ratio between w and D [10]: 

 
D

w
x  . (1) 

The equivalent resistance of the memristor M is a state-

dependent one and it is expressed as follows [10], [15]: 

    xRxRxM OFFON  1 . (2) 
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where RON is the ON resistance state and ROFF is the OFF-
resistance state of the memristor, respectively. 

The state differentiable equation of the memristor relates 

the time derivative of the state variable x and the current i (or 

the voltage v). A constant dependent on the memristor 

physical parameters and a window function for limitation the 

state variable in the range (0,1) are usually applied in the 

right-hand side of the state equation [10]. Follows the basic 

hafnium dioxide memristor models and their description. 

A. Standard Hafnium Dioxide Memristor Model with 

activation thresholds [10] 

According to this model [10] the state differential equation 

of the hafnium dioxide memristor is [10]: 
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where vtp and vtn are the positive and the negative activation 

thresholds, respectively, tswp and tswn are the OFF to ON and 

the ON to OFF switching times of the memristor. System (3) 

completely describes the considered model. This memristor 

model is simple for realization. An advantage of this model is 

the lack of window function which sometimes leads to 

jumping the state variable outside the previously defined 

physical interval (0, 1). 

B. Standard Hafnium Dioxide Memristor Model with a 

highly nonlinear window function [10] 

This memristor model [10] contains a nonlinear window 

function for limitation the state variable. It is completely 

represented by the next system (4) [10]: 
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where Δr = Roff - Ron, CLRS = (ROFF - RON)/tswp, CHRS = (ROFF 

- RON)/tswn, tswp=0.1 s, tswn = 0.1 s, PHRS = 1.71, PLRS = 1.73, 

βHRS = 1.3, βLRS = 1.3, ϴHRS = 1.2, ϴLRS = 1.2, vtp = 0.5 V, vtn 

= -0.5 V are parameters for adjustment the memristor model 

according to experimentally recorded current-voltage 

relationships [10]. The memristor model has a good 

adjustability. It could incompletely represent the nonlinear 

relationship between the ionic dopant drift and the applied 

memristor voltage. A drawback of this memristor model is its 

higher complexity owing to the large number of the used 

elementary mathematical operations. 

C. The proposed modified memristor model 

This hafnium dioxide memristor model is mainly based on 

the Lehtonen-Laiho memristor model [22]. The applied 

window function is based on a combination of two 

exponential logistic functions. The derived window function 

is a smooth and differentiable one. The proposed hafnium 

dioxide memristor model is completely represented by the 

next set of equations: 
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where a, m, k, β, n, α, χ, γ are parameters for tuning the model 

according to experimental current-voltage relationships. The 

tuning procedure is realized in MATLAB environment using 

Simulink model of (5) and applying a procedure for 

parameters estimation [27], [28], [29], [30]. A methodology 

for minimizing the root mean square error between the 

experimental and simulated current-voltage characteristics is 

also applied for the extraction of the optimal values of the 

parameters [30], [31], [32], [33]. This methodology is based 

on altering the parameters of the memristor model in broad 

ranges and on a search of a global minimum of the cost 

function which in this case is the root mean square error 

between the i-v relationships. The derived values of these 

parameters are: β=150 µA, α=3.55 V-1, χ=50 µA, γ=0.07 V-1, 

a=3.34, k=100, m=5, n=5.  The proposed memristor model 

with the optimal values of its parameters is analyzed in 

MATLAB [30] and LTSPICE environment and compared to 

several existing and modified models [30], [31]. A good 

agreement between the state-flux and current-voltage rela-

tionships is derived. Follows the derived basic characteristics 

for a state near to a hard-switching operating mode of the 

considered memristor. The time diagrams of the memristor 

voltage v and current i are presented in Fig. 2 for visualization 

the nonlinearity of the flowing current corresponding to the 

applied sinusoidal voltage signal. 

 

Fig. 2 Time diagrams of the memristor voltage v and current i 

The time diagrams of the state variable x and the voltage 

are presented in Fig. 3 for visualization the range of altering 

of x and establishing the operating mode of the memristor. In 

the present case the element operates in a soft-switching 

mode because x is altering between 0.3 and 0.9. 
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Fig. 3 Time diagrams of the state variable x and voltage v 

The corresponding current-voltage relationship of the 

memristor is presented in Fig. 4. It is a symmetrical according 

to the origin curve. Additional experiments confirm that with 

increasing the operating frequency the i-v curve shrinks to a 

single-valued straight line which prove the correct behavior 

of the proposed memristor model. 

 

Fig. 4. Current-voltage relationship of the considered memristor 

The corresponding state-flux relationship is presented in 

Fig. 5 for confirmation the established operating mode. In the 

present case the state-flux relationship is a single-valued 

monotonically increasing curve [28], [29]. 

 

Fig. 5 State-flux relationship of the memristor element 

III. A DESCRIPTION OF THE PROPOSED MEMRISTOR-BASED 

SYNAPTIC SCHEME 

The schematic of the proposed synapse is presented in Fig. 

6 for explanation of its operation. It is based on a current 

divider and an operational amplifier. The current divider has 

two branches. The first branch contains a memristor element 

M and a resistor – R3, and the second branch contains two 

resistors connected in a series - R1 and R2. The related currents 

are denoted by i1 and i2, correspondingly. The input voltage 

signal is denoted by vin. The voltages across the resistors R2 

and R3 are: 
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Fig. 6 A schematic of the proposed memristor-based synaptic circuit. 

The output voltage of the synapse vout is: 
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where kv is the transfer coefficient of the operational 

amplifier. The values of the resistors are: R1 = 500 Ω, R2 = R3 

= 1.5 kΩ. The synaptic weight of the discussed circuit w is 

dependent on the memristance M: 
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The memristance M and the corresponding synaptic weight 

w are altered by external pulses affecting the memristor state 

variable x. After a simple transformation of (9) and paying 

attention on the fact that R2 = R3 it is obtained that if R1 = M 

then w = 0. Positive synaptic weights are derived when M > 

R1. If M < R1 then w < 0. By the change of the transfer 

coefficient of the operational amplifier, scaling of the 

synaptic weights is realized. The described synaptic device is 

successfully applied in a simple neural network for XOR 

logic function emulation. 

IV. ANALYSIS OF THE CONSIDERED NEURAL NETWORK 

A simple neural network for XOR logical function 

emulation is presented in Fig. 7. It contains two hidden layers. 

The first hidden layer contains four neurons and the second 

one is made of three neurons. The neurons in the hidden layer 

are with a sigmoidal activation function while the neuron in 

the output layer is with a linear activation function. The 

synaptic bonds between the neurons are memristor-based and 

their detailed diagram is presented in Fig. 6. The input signals 

are with level of one and they are previously sampled. The 

artificial neural network has been trained for 103 epochs with 

all the possible combinations of the input signals corres-

ponding to the logical levels of zero and unity till reaching a 

global minimum of the root mean square error between the 

desired and the actual output signal. 

 

Fig. 7 A simple neural network for XOR logic function emulation 
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The error signal derived during the testing stage is about 

ten thousand times lower than the level of the input and the 

output signals. Finally, it was concluded that the presented 

neural network with memristor-based synapses correctly 

emulates the logical function XOR. 

V. CONCLUSIONS 

In this work a modified synaptic scheme based on 
memristor is presented and analyzed. It is based on a current 
divider and an operational amplifier. The current divider is 
made of a hafnium dioxide memristor element and a resistor. 
The operation of the considered synaptic scheme is founded 
on a comparison of the currents flowing through the 
memristor and the resistor. The memristor current is 
dependent not only on the applied input voltage but also on 
the memristor state variable. An advantage of the proposed 
circuit is its capability to produce positive, zero and negative 
synaptic weights. The synaptic circuit has minimal number of 
memristors per synapse which is it’s another advantage 
according to several existing synaptic circuits with increased 
number of memristors per synapse. The considered synapse 
is successfully analyzed using a modified model of hafnium 
dioxide memristor. It is successfully applied and tested in a 
neural network for XOR logic function representation in 
LTSPICE environment. A comparison to several other 
memristor models is conducted as well. The applied modified 
memristor model is simple and appropriate for analysis of 
electronic circuits. Finally, it could be concluded that the 
analyzed memristor-based synaptic schemes successfully 
operate in the artificial neural network for XOR logical 
function representation and the modified hafnium dioxide 
memristor model applied in this work is suitable for analysis 
of complex memristor-based schemes. 
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