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Abstract — Evolutionary algorithms provide the ability to 

automatically design robot controllers, but their wider use is 

hampered by a number of problems, including the difficulty of 

obtaining complex behaviors. This paper proposes a 

biologically inspired indirect encoding method for developing 

neural networks that control autonomous agents. The model is 

divided into three stages, the first two stages determine the 

structure of the network – the positions of the neurons and the 

network connectivity, and the third stage, occurring during the 

lifetime of the agent, determines the strength of connections 

based on the network activity. The model was tested expe-

rimentally by simulating an agent in an artificial environment, 

and the results of these simulations show that the method 

successfully evolved agents, capable of distinguishing between 

several types of objects, collecting some while avoiding others, 

without the use of a complex fitness function. 

 

Index Terms — artificial nervous system, autonomous agent, 

developmental representation, indirect encoding, neuroevolution 

 

I. INTRODUCTION 

Designing a robot's control system is not an easy task 

because of the difficulty in predicting how the robot will 

interact with the environment, especially when the task and 

environment are complex. The use of automated methods 

for designing robot controllers not only facilitates the work 

of researchers and engineers, but also provides an 

opportunity to find "non-standard" ways of solving the 

problem that designers have not thought of. Evolutionary 

algorithms are one of the most popular methods used to 

automatically design robot controllers. 

The field of evolutionary robotics faces a number of 

problems [1], one of which is the difficulty of obtaining 

complex behaviors, which in turn limits its application in 

real situations. There are a number of attempts to solve this 

problem such as the use of modules [2], [3], incremental 

evolution [4], [2], [5], the use of neuronal models with more 

complex dynamics, such as Continuous-time recurrent 

neural networks (CTRNN) [6] and spiking neural networks 

[7], open-ended evolution [5], as well as the use of indirect 

encoding [8], which allows the efficient evolution of more 

complex networks. 

This paper proposes and experimentally tests a 

biologically inspired developmental model for the evolution 

of neural networks for the control of autonomous agents. 

The article is structured as follows – section II presents 

related works, section III describes the model, section IV 

describes the performed experiment, section V presents the 

experimental results, and section VI presents the conclusion. 

II. RELATED WORK 

Cellular encoding [9] is an indirect method for encoding 

neural networks based on cellular duplication, that starts 

with a single cell and through a series of cell divisions and 

transformations results in a complete network. The genome 

is a list of trees describing developmental rules, such as cell 

division, adding and removing connections and changing the 

weights of the connections. A tree can be called by other 

trees, which makes it easier to evolve modular networks. 

The method successfully evolved a modular neural network 

that controlled the gait of a six-legged artificial insect. 

In [10] a geometrically-oriented modification of [9] is 

proposed, in which by specifying the sensory neurons, the 

motor neurons, the precursor cells and their positions, a 

desired geometry can be introduced into the network. The 

method was used to evolve a simulated six-legged insect 

that can reach a source of odor by avoiding obstacles in its 

path. 

The authors of [11] used a neural network developmental 

model that includes a cell division and migration phase and 

an axonal growth and branching phase, to evolve a 

simulated creature that must learn to eat food when hungry 

and drink water when thirsty. The evolved networks show a 

modular structure with two modules – one for food and one 

for water. 

The authors of [12] evolved stimulus-avoiding agents as 

well as agents that follow a curve, using a model based on 

genetic regulatory networks represented by a random 

Boolean network, which determines the cellular division and 

axonal growth. 

The authors of [13] propose a model in which the 

development of the network occurs during the life of the 

organism, by controlling the growth of the axon using the 

variability in the activation of the neuron. The authors 

showed experimentally that organisms that had evolved in 

one environment were capable of adapting to a different 

environment. 

The authors of [14] propose an evolutionary model in 

which a growth phase of the connections between neurons 

alternates with a phase of generating spontaneous activity, 

which in turn regulates subsequent growth steps. Excess 

connections are removed after all growth is completed. 

III. PROPOSED MODEL 

In nature, the development of the nervous system is 

influenced by the environment [15], thus facilitating 
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evolution and allowing for the ability to adapt to a particular 

environment, as it is not necessary to genetically encode the 

entire nervous system in all its detail, but only a rough 

template that is further refined through interactions with the 

environment. The neural development begins with the birth 

of neurons, their migration and the formation of a large 

number of synapses, followed by an activity-dependent 

synaptic pruning [16]. 

Based on this, a model for the development of an artificial 

nervous system for autonomous agents is proposed, in which 

the development can be divided into three phases. In the 

first, neurons are generated and migrate, in the second, 

connections are formed, and in the third phase, which takes 

place during the lifetime of the agent, the connections are 

modified depending on the activity of the network. The 

neuronal migration stage is inspired by the development of 

the cerebral cortex, which is formed from the inside out in 

layers by successive waves of migrating neurons [17]. 

The proposed model does not aim to accurately model 

biological processes, but is an abstraction of some of their 

features for computational applications. 

The neural networks are located in a 2D plane and are 

encoded indirectly as a sequence of neuronal subpopulations 

that are placed sequentially in the plane one after the other, 

i.e. the neurons from the first subpopulation are placed first 

at the beginning of the horizontal axis, after that the neurons 

from the next subpopulation are placed to the right of them, 

and so on. 

A. Genome 

The genome is of variable length and represents a 

sequence of neuronal subpopulations, with a minimum 

length of 2, as the first subpopulation is always interpreted 

as the input neurons and the last as the output neurons. 

Each neuronal subpopulation (except the first and last) is 

defined by the following parameters – number of neurons, 

neuronal personal space, four vertices of a quadrilateral, 

maximum length of the axon, activation threshold and 

learning rate. The first subpopulation is encoded by neuronal 

personal space, maximum axonal length, activation 

threshold, and learning rate, and the last one by neuronal 

personal space and activation threshold. The neuronal 

personal space determines the minimum distance between 

two neurons from the same subpopulation, at which they 

will not interfere with each other, i.e. the two neurons are 

thought to overlap if they enter each other’s personal spaces. 

The coordinates of the four vertices determine the area of a 

quadrilateral in which the neurons can be located, and the 

maximum length of the axon determines the maximum 

distance at which neurons from this subpopulation will form 

connections with other neurons. The activation threshold 

and learning rate are used to modify the weights depending 

on the neuronal activity (for more information see section III 

D). 

All values in the genome (except for the number of 

neurons) are normalized from 0 to 1, and when the network 

is constructed the actual values for the respective 

subpopulation are obtained by multiplying these values by 

the number of neurons in the subpopulation, with the 

exception of the values for the activation threshold and the 

learning rate which are left within the range from 0 to 1. 

B. Placing and moving neurons in a subpopulation 

The neurons of the first subpopulation are considered to 

be the input neurons and are placed at the beginning of the 

horizontal axis, one on top of the other at a vertical distance 

from each other determined by the real value of their 

personal space (normalized value multiplied by the number 

of neurons in the subpopulation) so that they do not enter 

each other's personal spaces. The neurons from the next 

subpopulation are placed to the right of the input neurons at 

a minimum possible horizontal distance – 0.1*number of 

neurons of the input subpopulation. 

For intermediate subpopulations, the first four neurons are 

placed in the four vertices of the quadrilateral describing the 

shape of the subpopulation. Each subsequent neuron is 

placed at the center of the subpopulation at this time: 

         
 

 
∑ 

      
 

 
∑ 

      , where n are the 

neurons placed so far. 

 

Fig. 1. Neuron n2 acts on neuron n1 with a pushing force because n1 has 

entered its personal space. 

Each time a new neuron is placed, a check is performed to 

determine whether there are any overlapping neuron pairs 

(neurons that enter each other's personal space) and an 

attempt is made to resolve the overlap by moving the 

neurons. Attempts to resolve overlaps are made until a 

maximum number of steps is reached (in the experiment, the 

maximum number of steps is set to 10) or when there are no 

more overlapping pairs. When two neurons get close enough 

to each other (enter each other's personal space), they begin 

to push each other, i.e. when a neuron enters the personal 

space of another neuron, the second neuron acts with a 

repulsive force on the first one trying to push it out of its 

personal space in a direction determined by the line 

connecting the two neurons (Fig. 1) and magnitude of the 

force: 

| |                    where d is the distance 

between the two neurons. When a direction cannot be 

determined, i.e. the coordinates of the two neurons are the 

same, the force is directed parallel to the horizontal axis, and 

if the neuron on which the force acts is older than the other 

one, the direction is to the left, otherwise – to the right. 

The displacement of a neuron is determined by the net 

force acting on it as a result of all the other neurons with 

which it overlaps, i.e. has entered their personal spaces (Fig. 

2). The neurons placed at the vertices of the quadrilateral 

cannot be moved. When a neuron moves outside of the 

quadrilateral, it is returned inside by generating a mirror 

image of its coordinates relative to the wall of the 

quadrilateral which it had crossed to go outside. 
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Fig. 2. Neuron n1 has entered the personal spaces of neurons n2 and n3, 
which begin to push n1 with forces F21 and F31, respectively. The final 

displacement is determined by the sum of these forces – Fnet. 

Each subsequent neuronal subpopulation is placed after 

the previous one relative to the horizontal axis, i.e. to the 

right, with a minimum possible horizontal distance from the 

rightmost neuron from the previous subpopulation of 

0.01*number of neurons of the previous subpopulation. 

The last subpopulation represents the output neurons, 

which are placed similarly to the input ones – one on top of 

the other at a vertical distance so that they do not enter each 

other's personal space. 

C. Connecting the neurons 

After the completion of the neuronal placement phase, the 

network connectivity is determined. Each neuron connects 

to all neurons to its right that are within its range, i.e. are at a 

distance less than the maximum length of its axon. The 

initial values of the weights are determined by the distance 

between the two neurons: 1/d. 

After the connection phase is complete, those parts of the 

network that do not contribute to the output, as well as those 

that do not receive input information, are removed. 

D. Using network activity to train the connection weights 

The weights of the connections of the neurons are 

modified based on the activity of the network during the 

lifetime of the agent. The presynaptic rule is used to modify 

them – the weight changes only when the presynaptic 

neuron is active (has an output above the activation 

threshold), if the postsynaptic neuron is also active, the 

weight increases, otherwise it decreases: 

   
     

                 where     is +1 or -1 

depending on whether the postsynaptic neuron is active or 

not, η is the learning rate. Weights can have values between 

-1 and 1. 

IV. EXPERIMENT 

The model was tested experimentally by simulating an 

agent in an artificial world, the experiment was performed 

on a system with Intel Core i7-9750H CPU @ 2.60GHz and 

16 GB RAM. 

A. Simulated World 

The artificial world is a square 2D arena composed of 

cells (squares) (Fig. 3). The arena is completely closed on 

all sides with walls. In addition to the walls that occupy the 

outermost squares, there are two types of objects – food and 

poison. The agent has orientation and energy, and can sense 

what object is directly in front of it, as well as how "tired" it 

is, i.e. its available energy.  

 
Fig. 3. A sample world of size 20x20 with 5 food items and 5 poison items. 

The agent is represented by a circle (the arrow indicating its orientation), 

the food is represented by a triangle, and the poison by a rhombus. The 
filled squares represent the walls. 

The agent is capable of three actions – turning clockwise, 

turning counterclockwise and moving one position forward 

(in the direction of its orientation). Any object, including the 

walls, can decrease or increase the energy of the agent when 

it is encountered (moving on top of the object or in the case 

of a wall – an attempt to move). When the agent eats food, 

its energy increases, when it eats poison – it decreases, and 

the energy also decreases when the agent collides with a 

wall. For each unit of time elapsed, the energy of the agent 

decreases, and in addition to that, each action leads to a 

further reduction in energy. The agent must learn to explore 

its environment without bumping into walls and to learn 

which objects are good and which are bad, i.e. to eat food 

but avoid poison. 

B. Genetic Algorithm 

A genetic algorithm is used to evolve the neural network 

that controls the agent in the environment, or more 

precisely, the number of neuronal subpopulations and their 

parameters are evolved. 

In the experiment, a population of 100 individuals was 

evolved over 200 generations. A tournament selection was 

used for the selection of parents, with a tournament size of 

2. Elitism was used, and the 2 best solutions from the 

previous generation were added directly to the next 

population. The number of neurons in the input subpopu-

lation and the number of neurons in the output 
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subpopulation were fixed. For the input one they were 5, 

one for each type of sensory information – no object (empty 

square), wall, food, poison, internal energy. For the output 

subpopulation, there were 3 neurons, one for each type of 

action – clockwise rotation, counterclockwise rotation and 

forward movement. The output neuron with the highest 

activation determines which action will be taken. Noise with 

normal distribution with μ = 0 and σ = 0.05 was added to the 

activations of the input and output neurons. The sigmoid 

function was used to obtain the output signal of the neurons. 

C. Initial population 

The initial population consists of random individuals with 

an input and an output subpopulation and any number of 

intermediate (between the input and the output one) 

subpopulations in the range between 0 and 10, each with a 

random number of neurons in the range between 1 and 10. 

D.  Crossover 

As in [18], the probability of crossover is related to how 

similar the two individuals are in terms of the number of 

neuronal subpopulations: 

    
|     |

            
  where l1 and l2 are the lengths (number 

of neuronal subpopulations) of the two parent solutions. A 

minimum crossover probability of 0.05 was set. A modified 

single-point crossover for solutions of different lengths [18] 

was used, in which each parent has a seperate crosover 

point, the one for the shorter solution is determined by 

scaling the selected crossover point for the longer one so 

that the two points have the same relative positions in the 

two solutions. When no crossover takes place, the children 

are just copies of the two parents. 

E.  Mutation 

After crossover, each of the two newly obtained solutions 

(children) can be mutated with a certain probability. The 

value of this probability starts from 0.9 in the first 

generation and decreases with each subsequent one by 0.01 

until reaching a minimum probability of 0.2. There are three 

possible mutations: 

 Modifying a subpopulation – the value of one of 

the parameters of a randomly selected neuronal 

subpopulation is modified. When modifying the 

vertices, one of the coordinates of a randomly 

selected vertex is modified. The number of neurons 

in the intermediate subpopulations can be increased 

or decreased by one (with a minimum allowed 

number of 1 neuron in the subpopulation), and the 

remaining parameters can be mutated by adding 

noise with a normal distribution with μ = 0 and σ = 

0.01. 

 Adding an intermediate subpopulation – a new 

(randomly generated) intermediate subpopulation is 

added at a specific location in the solution between 

the input and the output subpopulations. 

 Removing an intermediate subpopulation – one of 

the existing intermediate subpopulations is selected 

and removed. 

The probability of modifying a subpopulation is 50%, the 

removal and the addition of an intermediate subpopulation 

are equally likely. 

F.  Fitness function 

The performance of the network is assessed by placing 

the agent (with random orientation) in a random position in 

the world and leaving it to perform actions for a certain 

period of time or until the agent has run out energy. In order 

to avoid the introduction of additional bias, the simplest 

possible fitness function is used, which is determined by 

how long the agent has managed to keep its internal energy 

above a certain energy threshold (i.e. how long the agent has 

been in good "health"). The size of the world is set to be 

20x20, with 100 food items and 100 poison items randomly 

placed at each initialization. The agent always starts with 

1000 units of energy, the energy threshold is set to 500. For 

each time step of the simulation the energy of the agent is 

reduced by 1, and when an action is performed the energy is 

further reduced by 10. When ingesting food, the energy of 

the agent increases by 400, in case of ingestion of poison the 

energy decreases by 400, and in case of a collision with a 

wall the energy decreases by 200. The maximum number of 

time steps for quality assessment is 1500. 

Due to the stochastic nature of the world generation (food 

items and poison items are initialized at random positions) 

and the initial placement and orientation of the agent, the 

evaluation is performed 10 independent times with different 

randomly initialized worlds, these 10 worlds (including the 

starting position of the agent and its orientation) are the 

same for all individuals. The fitness function is: 
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where n is the number of evaluations. Successful individuals 

are not only those that show good average performance, but 

also ones that show consistency between the evaluations. 

The parameter α was set to 0.1. If one of the intermediate 

subpopulations is shaped by a crossed quadrilateral, the 

individual's performance is not evaluated and it is given a 

fitness of 0. When the center of the intermediate neuronal 

subpopulation is outside the quadrilateral, the fitness is also 

0. 

V.  RESULTS 

Due to the stochastic nature of the algorithm, the 

experiment was repeated 3 times, one run taking on average 

around 18.5 hours. Table I lists the genomes of the best 

individual of the last generation for each experimental run.  

Figures 4-6 show the constructed neural networks of the 

best individuals after removing the excess parts. Input 

neurons are shown in blue and the output neurons – in 

orange. From the bottom up, each input neuron represents 

information about an empty square, a wall, a food item, a 

poison item and internal energy, respectively. Again, from 

the bottom up, each output neuron is responsible for the 

following actions – turning clockwise, turning counterclock-

wise and moving forward, respectively. 
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From these figures it can be seen that in two of the runs 

the algorithm evolves similar simple structures. In both 

cases, neural networks ignore input information about 

poison objects and internal energy. The input neuron, 

activated in the presence of food in front of the agent, is 

directly connected to the motor neuron responsible for 

moving forward. The input neuron, activated in the presence 

of a wall, is directly connected to the motor neuron 

responsible for counterclockwise rotation and the input 

neuron, activated when there are no objects in front of the 

agent is connected to the motor neuron responsible for 

clockwise rotation. In the third run, the best neural network 

only takes into account the input information about poison 

objects and ignores everything else. None of the best neural 

networks use information about the internal energy of the 

agent. 

 

 

Fig. 4. The resulting neural network from the best individual of the last 

generation of the first run of the experiment. The input neurons are shown 

in blue and the output neurons in orange. 

 

 

Fig. 5. The resulting neural network from the best individual of the last 
generation of the second run of the experiment. The input neurons are 

shown in blue and the output neurons in orange. 

 

TABLE I 

THE BEST GENOME OF EACH RUN 

Run Subpopulation Genome 

 

1 

[0.3537433688394607, 
0.3475420898389171, 

0.4151090370591758, 

0.8419326101666478] 

2 

[1, 0.1582100867781533, 

[[0.7006565490373394, 

0.6103082106656933], 
[0.581796878365856, 

0.37042622915757495], 

[0.5414104758227963, 
0.9092641150092111], 

[0.5633864207692753, 
0.8427584874220297]], 

0.7928915002854481, 0.783577013841125, 

0.6358753118520005] 

3 
[0.4867450286691157, 

0.42427574085087977] 

2 

1 

[0.6075084990678143, 
0.8128391036963282, 

0.28948784454879833, 

0.2882099985055757] 

2 

[3, 0.4866316784971686, 

[[0.8606437748466655, 

0.13740843357560717], 
[0.4675881117879297, 

0.6203542772742386], 

[0.02702814608933235, 
0.06441176767996604], 

[0.3313173733960509, 

0.03238670717154912]], 
0.33978593718623096, 

0.6771205787451327, 

0.4363457951423555] 
3 [1.0, 0.0504312514750648] 

3 

1 

[0.15814631702005488, 

0.277922483013492, 0.8543802425120453, 
0.477519802746862] 

2 

[6, 0.5438169103208217, 

[[0.03862065744047294, 
0.8069786783406282], 

[0.3740547063910148, 

0.5139355081411615], 
[0.27081966217606757, 

0.5674932988411782], 

[0.6564083293575926, 
0.36205149468600506]], 

0.8800661379498583, 

0.7871085047283626, 0.0] 

3 
[0.017519626872972642, 

0.2858690602994516] 

Genomes are a list of neuronal subpopulations. For the first 

subpopulation, the parameters are - neuronal personal space, maximum 

axon length, activation threshold and learning rate. For the last 
subpopulation the parameters are neuronal personal space and activation 

threshold. For the intermediate subpopulations the parameters are 

number of neurons, neuronal personal space, vertices of a quadrilateral, 
maximum axon length, activation threshold and learning rate. 
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Fig. 6. The resulting neural network from the best individual of the last 

generation of the third run of the experiment. The input neurons are shown 
in blue and the output neurons in orange. 

Agents controlled by the best networks of the first two 

runs show similar behaviors by eating the food in front of 

them and avoiding the walls – whenever there is food in 

front of them, they move towards it, when they are facing a 

wall they always turn counterclockwise and when there is no 

object in front of them, they most often move forward, 

turning from time to time. These agents show indifference to 

poisonous objects. The agent controlled by the best network 

of the third run successfully avoids all poisonous objects by 

turning clockwise, but as expected shows indifference to all 

other objects. 

Figures 7-9 show the best fitness and the average fitness 

of the population for each generation for the three 

experimental runs. They show that fitness increases in the 

process of the evolutionary search, both for the best 

individuals and for the entire population. 

 

 

Fig. 7. The best fitness and the average fitness per generation of run 1. 

 

Fig. 8. The best fitness and the average fitness per generation of run 2. 

 

Fig. 9. The best fitness and the average fitness per generation of run 3. 

VI. CONCLUSION 

A biologically inspired indirect encoding scheme for the 

evolution of neural networks for autonomous agents was 

proposed, in which the neural networks develop and 

subsequently, during the agent's lifetime, are tuned by its 

interactions with the environment. The model was tested 

experimentally on a simulation of an artificial world, and the 

results show that by using a simple implicit fitness function, 

agents capable of distinguishing between different objects 

can be successfully evolved. Future work will be to test the 

model on a simulation of a real environment and robot, as 

well as a subsequent test on a real physical robot. 
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