
PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021 23

https://doi.org/10.47978/TUS.2021.71.01.005

Abstract — Evolutionary algorithms provide the ability to

automatically design robot controllers, but their wider use is

hampered by a number of problems, including the difficulty of

obtaining complex behaviors. This paper proposes a

biologically inspired indirect encoding method for developing

neural networks that control autonomous agents. The model is

divided into three stages, the first two stages determine the

structure of the network – the positions of the neurons and the

network connectivity, and the third stage, occurring during the

lifetime of the agent, determines the strength of connections

based on the network activity. The model was tested expe-

rimentally by simulating an agent in an artificial environment,

and the results of these simulations show that the method

successfully evolved agents, capable of distinguishing between

several types of objects, collecting some while avoiding others,

without the use of a complex fitness function.

Index Terms — artificial nervous system, autonomous agent,

developmental representation, indirect encoding, neuroevolution

I. INTRODUCTION

Designing a robot's control system is not an easy task

because of the difficulty in predicting how the robot will

interact with the environment, especially when the task and

environment are complex. The use of automated methods

for designing robot controllers not only facilitates the work

of researchers and engineers, but also provides an

opportunity to find "non-standard" ways of solving the

problem that designers have not thought of. Evolutionary

algorithms are one of the most popular methods used to

automatically design robot controllers.

The field of evolutionary robotics faces a number of

problems [1], one of which is the difficulty of obtaining

complex behaviors, which in turn limits its application in

real situations. There are a number of attempts to solve this

problem such as the use of modules [2], [3], incremental

evolution [4], [2], [5], the use of neuronal models with more

complex dynamics, such as Continuous-time recurrent

neural networks (CTRNN) [6] and spiking neural networks

[7], open-ended evolution [5], as well as the use of indirect

encoding [8], which allows the efficient evolution of more

complex networks.

This paper proposes and experimentally tests a

biologically inspired developmental model for the evolution

of neural networks for the control of autonomous agents.

The article is structured as follows – section II presents

related works, section III describes the model, section IV

describes the performed experiment, section V presents the

experimental results, and section VI presents the conclusion.

II. RELATED WORK

Cellular encoding [9] is an indirect method for encoding

neural networks based on cellular duplication, that starts

with a single cell and through a series of cell divisions and

transformations results in a complete network. The genome

is a list of trees describing developmental rules, such as cell

division, adding and removing connections and changing the

weights of the connections. A tree can be called by other

trees, which makes it easier to evolve modular networks.

The method successfully evolved a modular neural network

that controlled the gait of a six-legged artificial insect.

In [10] a geometrically-oriented modification of [9] is

proposed, in which by specifying the sensory neurons, the

motor neurons, the precursor cells and their positions, a

desired geometry can be introduced into the network. The

method was used to evolve a simulated six-legged insect

that can reach a source of odor by avoiding obstacles in its

path.

The authors of [11] used a neural network developmental

model that includes a cell division and migration phase and

an axonal growth and branching phase, to evolve a

simulated creature that must learn to eat food when hungry

and drink water when thirsty. The evolved networks show a

modular structure with two modules – one for food and one

for water.

The authors of [12] evolved stimulus-avoiding agents as

well as agents that follow a curve, using a model based on

genetic regulatory networks represented by a random

Boolean network, which determines the cellular division and

axonal growth.

The authors of [13] propose a model in which the

development of the network occurs during the life of the

organism, by controlling the growth of the axon using the

variability in the activation of the neuron. The authors

showed experimentally that organisms that had evolved in

one environment were capable of adapting to a different

environment.

The authors of [14] propose an evolutionary model in

which a growth phase of the connections between neurons

alternates with a phase of generating spontaneous activity,

which in turn regulates subsequent growth steps. Excess

connections are removed after all growth is completed.

III. PROPOSED MODEL

In nature, the development of the nervous system is

influenced by the environment [15], thus facilitating

A Novel Biologically Inspired

Developmental Indirect Encoding

for the Evolution of Neural Network

Controllers for Autonomous Agents

Stefan Tsokov, Milena Lazarova, Adelina Aleksieva-Petrova

24 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

evolution and allowing for the ability to adapt to a particular

environment, as it is not necessary to genetically encode the

entire nervous system in all its detail, but only a rough

template that is further refined through interactions with the

environment. The neural development begins with the birth

of neurons, their migration and the formation of a large

number of synapses, followed by an activity-dependent

synaptic pruning [16].

Based on this, a model for the development of an artificial

nervous system for autonomous agents is proposed, in which

the development can be divided into three phases. In the

first, neurons are generated and migrate, in the second,

connections are formed, and in the third phase, which takes

place during the lifetime of the agent, the connections are

modified depending on the activity of the network. The

neuronal migration stage is inspired by the development of

the cerebral cortex, which is formed from the inside out in

layers by successive waves of migrating neurons [17].

The proposed model does not aim to accurately model

biological processes, but is an abstraction of some of their

features for computational applications.

The neural networks are located in a 2D plane and are

encoded indirectly as a sequence of neuronal subpopulations

that are placed sequentially in the plane one after the other,

i.e. the neurons from the first subpopulation are placed first

at the beginning of the horizontal axis, after that the neurons

from the next subpopulation are placed to the right of them,

and so on.

A. Genome

The genome is of variable length and represents a

sequence of neuronal subpopulations, with a minimum

length of 2, as the first subpopulation is always interpreted

as the input neurons and the last as the output neurons.

Each neuronal subpopulation (except the first and last) is

defined by the following parameters – number of neurons,

neuronal personal space, four vertices of a quadrilateral,

maximum length of the axon, activation threshold and

learning rate. The first subpopulation is encoded by neuronal

personal space, maximum axonal length, activation

threshold, and learning rate, and the last one by neuronal

personal space and activation threshold. The neuronal

personal space determines the minimum distance between

two neurons from the same subpopulation, at which they

will not interfere with each other, i.e. the two neurons are

thought to overlap if they enter each other’s personal spaces.

The coordinates of the four vertices determine the area of a

quadrilateral in which the neurons can be located, and the

maximum length of the axon determines the maximum

distance at which neurons from this subpopulation will form

connections with other neurons. The activation threshold

and learning rate are used to modify the weights depending

on the neuronal activity (for more information see section III

D).

All values in the genome (except for the number of

neurons) are normalized from 0 to 1, and when the network

is constructed the actual values for the respective

subpopulation are obtained by multiplying these values by

the number of neurons in the subpopulation, with the

exception of the values for the activation threshold and the

learning rate which are left within the range from 0 to 1.

B. Placing and moving neurons in a subpopulation

The neurons of the first subpopulation are considered to

be the input neurons and are placed at the beginning of the

horizontal axis, one on top of the other at a vertical distance

from each other determined by the real value of their

personal space (normalized value multiplied by the number

of neurons in the subpopulation) so that they do not enter

each other's personal spaces. The neurons from the next

subpopulation are placed to the right of the input neurons at

a minimum possible horizontal distance – 0.1*number of

neurons of the input subpopulation.

For intermediate subpopulations, the first four neurons are

placed in the four vertices of the quadrilateral describing the

shape of the subpopulation. Each subsequent neuron is

placed at the center of the subpopulation at this time:

∑

∑

 , where n are the

neurons placed so far.

Fig. 1. Neuron n2 acts on neuron n1 with a pushing force because n1 has

entered its personal space.

Each time a new neuron is placed, a check is performed to

determine whether there are any overlapping neuron pairs

(neurons that enter each other's personal space) and an

attempt is made to resolve the overlap by moving the

neurons. Attempts to resolve overlaps are made until a

maximum number of steps is reached (in the experiment, the

maximum number of steps is set to 10) or when there are no

more overlapping pairs. When two neurons get close enough

to each other (enter each other's personal space), they begin

to push each other, i.e. when a neuron enters the personal

space of another neuron, the second neuron acts with a

repulsive force on the first one trying to push it out of its

personal space in a direction determined by the line

connecting the two neurons (Fig. 1) and magnitude of the

force:

| | where d is the distance

between the two neurons. When a direction cannot be

determined, i.e. the coordinates of the two neurons are the

same, the force is directed parallel to the horizontal axis, and

if the neuron on which the force acts is older than the other

one, the direction is to the left, otherwise – to the right.

The displacement of a neuron is determined by the net

force acting on it as a result of all the other neurons with

which it overlaps, i.e. has entered their personal spaces (Fig.

2). The neurons placed at the vertices of the quadrilateral

cannot be moved. When a neuron moves outside of the

quadrilateral, it is returned inside by generating a mirror

image of its coordinates relative to the wall of the

quadrilateral which it had crossed to go outside.

TSOKOV, Stefan et. al., A NOVEL BIOLOGICALLY INSPIRED DEVELOPMENTAL INDIRECT ENCODING… 25

Fig. 2. Neuron n1 has entered the personal spaces of neurons n2 and n3,
which begin to push n1 with forces F21 and F31, respectively. The final

displacement is determined by the sum of these forces – Fnet.

Each subsequent neuronal subpopulation is placed after

the previous one relative to the horizontal axis, i.e. to the

right, with a minimum possible horizontal distance from the

rightmost neuron from the previous subpopulation of

0.01*number of neurons of the previous subpopulation.

The last subpopulation represents the output neurons,

which are placed similarly to the input ones – one on top of

the other at a vertical distance so that they do not enter each

other's personal space.

C. Connecting the neurons

After the completion of the neuronal placement phase, the

network connectivity is determined. Each neuron connects

to all neurons to its right that are within its range, i.e. are at a

distance less than the maximum length of its axon. The

initial values of the weights are determined by the distance

between the two neurons: 1/d.

After the connection phase is complete, those parts of the

network that do not contribute to the output, as well as those

that do not receive input information, are removed.

D. Using network activity to train the connection weights

The weights of the connections of the neurons are

modified based on the activity of the network during the

lifetime of the agent. The presynaptic rule is used to modify

them – the weight changes only when the presynaptic

neuron is active (has an output above the activation

threshold), if the postsynaptic neuron is also active, the

weight increases, otherwise it decreases:

 where is +1 or -1

depending on whether the postsynaptic neuron is active or

not, η is the learning rate. Weights can have values between

-1 and 1.

IV. EXPERIMENT

The model was tested experimentally by simulating an

agent in an artificial world, the experiment was performed

on a system with Intel Core i7-9750H CPU @ 2.60GHz and

16 GB RAM.

A. Simulated World

The artificial world is a square 2D arena composed of

cells (squares) (Fig. 3). The arena is completely closed on

all sides with walls. In addition to the walls that occupy the

outermost squares, there are two types of objects – food and

poison. The agent has orientation and energy, and can sense

what object is directly in front of it, as well as how "tired" it

is, i.e. its available energy.

Fig. 3. A sample world of size 20x20 with 5 food items and 5 poison items.

The agent is represented by a circle (the arrow indicating its orientation),

the food is represented by a triangle, and the poison by a rhombus. The
filled squares represent the walls.

The agent is capable of three actions – turning clockwise,

turning counterclockwise and moving one position forward

(in the direction of its orientation). Any object, including the

walls, can decrease or increase the energy of the agent when

it is encountered (moving on top of the object or in the case

of a wall – an attempt to move). When the agent eats food,

its energy increases, when it eats poison – it decreases, and

the energy also decreases when the agent collides with a

wall. For each unit of time elapsed, the energy of the agent

decreases, and in addition to that, each action leads to a

further reduction in energy. The agent must learn to explore

its environment without bumping into walls and to learn

which objects are good and which are bad, i.e. to eat food

but avoid poison.

B. Genetic Algorithm

A genetic algorithm is used to evolve the neural network

that controls the agent in the environment, or more

precisely, the number of neuronal subpopulations and their

parameters are evolved.

In the experiment, a population of 100 individuals was

evolved over 200 generations. A tournament selection was

used for the selection of parents, with a tournament size of

2. Elitism was used, and the 2 best solutions from the

previous generation were added directly to the next

population. The number of neurons in the input subpopu-

lation and the number of neurons in the output

26 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

subpopulation were fixed. For the input one they were 5,

one for each type of sensory information – no object (empty

square), wall, food, poison, internal energy. For the output

subpopulation, there were 3 neurons, one for each type of

action – clockwise rotation, counterclockwise rotation and

forward movement. The output neuron with the highest

activation determines which action will be taken. Noise with

normal distribution with μ = 0 and σ = 0.05 was added to the

activations of the input and output neurons. The sigmoid

function was used to obtain the output signal of the neurons.

C. Initial population

The initial population consists of random individuals with

an input and an output subpopulation and any number of

intermediate (between the input and the output one)

subpopulations in the range between 0 and 10, each with a

random number of neurons in the range between 1 and 10.

D. Crossover

As in [18], the probability of crossover is related to how

similar the two individuals are in terms of the number of

neuronal subpopulations:

| |

 where l1 and l2 are the lengths (number

of neuronal subpopulations) of the two parent solutions. A

minimum crossover probability of 0.05 was set. A modified

single-point crossover for solutions of different lengths [18]

was used, in which each parent has a seperate crosover

point, the one for the shorter solution is determined by

scaling the selected crossover point for the longer one so

that the two points have the same relative positions in the

two solutions. When no crossover takes place, the children

are just copies of the two parents.

E. Mutation

After crossover, each of the two newly obtained solutions

(children) can be mutated with a certain probability. The

value of this probability starts from 0.9 in the first

generation and decreases with each subsequent one by 0.01

until reaching a minimum probability of 0.2. There are three

possible mutations:

 Modifying a subpopulation – the value of one of

the parameters of a randomly selected neuronal

subpopulation is modified. When modifying the

vertices, one of the coordinates of a randomly

selected vertex is modified. The number of neurons

in the intermediate subpopulations can be increased

or decreased by one (with a minimum allowed

number of 1 neuron in the subpopulation), and the

remaining parameters can be mutated by adding

noise with a normal distribution with μ = 0 and σ =

0.01.

 Adding an intermediate subpopulation – a new

(randomly generated) intermediate subpopulation is

added at a specific location in the solution between

the input and the output subpopulations.

 Removing an intermediate subpopulation – one of

the existing intermediate subpopulations is selected

and removed.

The probability of modifying a subpopulation is 50%, the

removal and the addition of an intermediate subpopulation

are equally likely.

F. Fitness function

The performance of the network is assessed by placing

the agent (with random orientation) in a random position in

the world and leaving it to perform actions for a certain

period of time or until the agent has run out energy. In order

to avoid the introduction of additional bias, the simplest

possible fitness function is used, which is determined by

how long the agent has managed to keep its internal energy

above a certain energy threshold (i.e. how long the agent has

been in good "health"). The size of the world is set to be

20x20, with 100 food items and 100 poison items randomly

placed at each initialization. The agent always starts with

1000 units of energy, the energy threshold is set to 500. For

each time step of the simulation the energy of the agent is

reduced by 1, and when an action is performed the energy is

further reduced by 10. When ingesting food, the energy of

the agent increases by 400, in case of ingestion of poison the

energy decreases by 400, and in case of a collision with a

wall the energy decreases by 200. The maximum number of

time steps for quality assessment is 1500.

Due to the stochastic nature of the world generation (food

items and poison items are initialized at random positions)

and the initial placement and orientation of the agent, the

evaluation is performed 10 independent times with different

randomly initialized worlds, these 10 worlds (including the

starting position of the agent and its orientation) are the

same for all individuals. The fitness function is:

(∑

) √

∑

(̅̅ ̅̅)

where n is the number of evaluations. Successful individuals

are not only those that show good average performance, but

also ones that show consistency between the evaluations.

The parameter α was set to 0.1. If one of the intermediate

subpopulations is shaped by a crossed quadrilateral, the

individual's performance is not evaluated and it is given a

fitness of 0. When the center of the intermediate neuronal

subpopulation is outside the quadrilateral, the fitness is also

0.

V. RESULTS

Due to the stochastic nature of the algorithm, the

experiment was repeated 3 times, one run taking on average

around 18.5 hours. Table I lists the genomes of the best

individual of the last generation for each experimental run.

Figures 4-6 show the constructed neural networks of the

best individuals after removing the excess parts. Input

neurons are shown in blue and the output neurons – in

orange. From the bottom up, each input neuron represents

information about an empty square, a wall, a food item, a

poison item and internal energy, respectively. Again, from

the bottom up, each output neuron is responsible for the

following actions – turning clockwise, turning counterclock-

wise and moving forward, respectively.

TSOKOV, Stefan et. al., A NOVEL BIOLOGICALLY INSPIRED DEVELOPMENTAL INDIRECT ENCODING… 27

From these figures it can be seen that in two of the runs

the algorithm evolves similar simple structures. In both

cases, neural networks ignore input information about

poison objects and internal energy. The input neuron,

activated in the presence of food in front of the agent, is

directly connected to the motor neuron responsible for

moving forward. The input neuron, activated in the presence

of a wall, is directly connected to the motor neuron

responsible for counterclockwise rotation and the input

neuron, activated when there are no objects in front of the

agent is connected to the motor neuron responsible for

clockwise rotation. In the third run, the best neural network

only takes into account the input information about poison

objects and ignores everything else. None of the best neural

networks use information about the internal energy of the

agent.

Fig. 4. The resulting neural network from the best individual of the last

generation of the first run of the experiment. The input neurons are shown

in blue and the output neurons in orange.

Fig. 5. The resulting neural network from the best individual of the last
generation of the second run of the experiment. The input neurons are

shown in blue and the output neurons in orange.

TABLE I

THE BEST GENOME OF EACH RUN

Run Subpopulation Genome

1

[0.3537433688394607,
0.3475420898389171,

0.4151090370591758,

0.8419326101666478]

2

[1, 0.1582100867781533,

[[0.7006565490373394,

0.6103082106656933],
[0.581796878365856,

0.37042622915757495],

[0.5414104758227963,
0.9092641150092111],

[0.5633864207692753,
0.8427584874220297]],

0.7928915002854481, 0.783577013841125,

0.6358753118520005]

3
[0.4867450286691157,

0.42427574085087977]

2

1

[0.6075084990678143,
0.8128391036963282,

0.28948784454879833,

0.2882099985055757]

2

[3, 0.4866316784971686,

[[0.8606437748466655,

0.13740843357560717],
[0.4675881117879297,

0.6203542772742386],

[0.02702814608933235,
0.06441176767996604],

[0.3313173733960509,

0.03238670717154912]],
0.33978593718623096,

0.6771205787451327,

0.4363457951423555]
3 [1.0, 0.0504312514750648]

3

1

[0.15814631702005488,

0.277922483013492, 0.8543802425120453,
0.477519802746862]

2

[6, 0.5438169103208217,

[[0.03862065744047294,
0.8069786783406282],

[0.3740547063910148,

0.5139355081411615],
[0.27081966217606757,

0.5674932988411782],

[0.6564083293575926,
0.36205149468600506]],

0.8800661379498583,

0.7871085047283626, 0.0]

3
[0.017519626872972642,

0.2858690602994516]

Genomes are a list of neuronal subpopulations. For the first

subpopulation, the parameters are - neuronal personal space, maximum

axon length, activation threshold and learning rate. For the last
subpopulation the parameters are neuronal personal space and activation

threshold. For the intermediate subpopulations the parameters are

number of neurons, neuronal personal space, vertices of a quadrilateral,
maximum axon length, activation threshold and learning rate.

28 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

Fig. 6. The resulting neural network from the best individual of the last

generation of the third run of the experiment. The input neurons are shown
in blue and the output neurons in orange.

Agents controlled by the best networks of the first two

runs show similar behaviors by eating the food in front of

them and avoiding the walls – whenever there is food in

front of them, they move towards it, when they are facing a

wall they always turn counterclockwise and when there is no

object in front of them, they most often move forward,

turning from time to time. These agents show indifference to

poisonous objects. The agent controlled by the best network

of the third run successfully avoids all poisonous objects by

turning clockwise, but as expected shows indifference to all

other objects.

Figures 7-9 show the best fitness and the average fitness

of the population for each generation for the three

experimental runs. They show that fitness increases in the

process of the evolutionary search, both for the best

individuals and for the entire population.

Fig. 7. The best fitness and the average fitness per generation of run 1.

Fig. 8. The best fitness and the average fitness per generation of run 2.

Fig. 9. The best fitness and the average fitness per generation of run 3.

VI. CONCLUSION

A biologically inspired indirect encoding scheme for the

evolution of neural networks for autonomous agents was

proposed, in which the neural networks develop and

subsequently, during the agent's lifetime, are tuned by its

interactions with the environment. The model was tested

experimentally on a simulation of an artificial world, and the

results show that by using a simple implicit fitness function,

agents capable of distinguishing between different objects

can be successfully evolved. Future work will be to test the

model on a simulation of a real environment and robot, as

well as a subsequent test on a real physical robot.

ACKNOWLEDGMENT

The work presented in the paper is supported by research

grant 202ПД0002-09 financed by the Research and

Development Sector of TU-Sofia.

TSOKOV, Stefan et. al., A NOVEL BIOLOGICALLY INSPIRED DEVELOPMENTAL INDIRECT ENCODING… 29

REFERENCES

[1] Eaton, M. (2015). Evolutionary Humanoid Robotics. Springer Berlin
Heidelberg, https://doi.org/10.1007/978-3-662-44599-0

[2] de Garis, H. (1991). Genetic Programming: GenNets, Artificial

Nervous Systems, Artificial Embryos. PhD thesis, Université Libre de
Bruxelles, Belgium, https://doi.org/10.1016/B978-0-444-89178-

5.50068-3

[3] Mouret, J. B., Doncieux, S., & Meyer, J. A. (2006, September).
Incremental evolution of target-following neuro-controllers for

flapping-wing animats. In International Conference on Simulation of

Adaptive Behavior (pp. 606-618). Springer, Berlin, Heidelberg,
https://doi.org/10.1007/11840541_50

[4] Auerbach, J. E., & Bongard, J. C. (2011). Evolving monolithic robot

controllers through incremental shaping. In New Horizons in
Evolutionary Robotics (pp. 55-65). Springer, Berlin, Heidelberg,

https://doi.org/10.1007/978-3-642-18272-3_5

[5] Lehman, J., & Stanley, K. O. (2011). Abandoning objectives:
Evolution through the search for novelty alone. Evolutionary

computation, 19(2), 189-223, https://doi.org/10.1162/EVCO_a_00025

[6] Beer, R. D. (1995). On the dynamics of small continuous-time
recurrent neural networks. Adaptive Behavior, 3(4), 469-509,

https://doi.org/10.1177/105971239500300405

[7] Maass, W. (1997). Networks of spiking neurons: the third generation
of neural network models. Neural networks, 10(9), 1659-1671,

https://doi.org/10.1016/S0893-6080(97)00011-7

[8] Silva, F., Correia, L., & Christensen, A. L. (2016). Evolutionary
robotics. In Evolutionary Robotics (No. 7). Scholarpedia,

https://doi.org/10.4249/scholarpedia.33333
[9] Gruau, F. (1994). Automatic definition of modular neural networks.

Adaptive behavior, 3(2), 151-183,

https://doi.org/10.1177/105971239400300202

[10] Kodjabachian, J., & Meyer, J. A. (1998). Evolution and development

of neural controllers for locomotion, gradient-following, and obstacle-

avoidance in artificial insects. IEEE transactions on neural networks,
9(5), 796-812, https://doi.org/10.1109/72.712153

[11] Cangelosi, A., Parisi, D., & Nolfi, S. (1994). Cell division and

migration in a ‘genotype’for neural networks. Network: computation
in neural systems, 5(4), 497-515, https://doi.org/10.1088/0954-

898X_5_4_005

[12] Dellaert, F., & Beer, R. D. (1996). A developmental model for the
evolution of complete autonomous agents. In Proceedings of the

fourth international conference on simulation of adaptive behavior

(pp. 393-401). Cambridge, MA: MIT Press.
[13] Nolfi, S., Miglino, O., & Parisi, D. (1994, September). Phenotypic

plasticity in evolving neural networks. In Proceedings of PerAc'94.

From Perception to Action (pp. 146-157). IEEE.
[14] Rust, A. G., Adams, R., George, S., & Bolouri, H. (1997). Activity-

based pruning in developmental artificial neural networks. In Proc. of

the European Conf. on Artificial Life (ECAL’97) (pp. 224-233).
[15] Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience

and brain development. Child development, 539-559,

https://doi.org/10.2307/1130197
[16] Collin, G., & Van Den Heuvel, M. P. (2013). The ontogeny of the

human connectome: development and dynamic changes of brain

connectivity across the life span. The Neuroscientist, 19(6), 616-628,
https://doi.org/10.1177/1073858413503712

[17] Ayala, R., Shu, T., & Tsai, L. H. (2007). Trekking across the brain:

the journey of neuronal migration. Cell, 128(1), 29-43,
https://doi.org/10.1016/j.cell.2006.12.021

[18] Tsokov, S., Lazarova, M., & Aleksieva-Petrova, A. (2021). An

evolutionary approach to the design of convolutional neural networks
for human activity recognition. Indian Journal of Computer Science

and Engineering, 12(2), 499-517,

https://doi.org/10.21817/indjcse/2021/v12i2/211202145

https://doi.org/10.1007/978-3-662-44599-0
https://doi.org/10.1016/B978-0-444-89178-5.50068-3
https://doi.org/10.1016/B978-0-444-89178-5.50068-3
https://doi.org/10.1007/11840541_50
https://doi.org/10.1007/978-3-642-18272-3_5
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1177/105971239500300405
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.4249/scholarpedia.33333
https://doi.org/10.1177/105971239400300202
https://doi.org/10.1109/72.712153
https://doi.org/10.1088/0954-898X_5_4_005
https://doi.org/10.1088/0954-898X_5_4_005
https://doi.org/10.2307/1130197
https://doi.org/10.1177/1073858413503712
https://doi.org/10.1016/j.cell.2006.12.021
https://doi.org/10.21817/indjcse/2021/v12i2/211202145

