
PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021 15 

https://doi.org/10.47978/TUS.2021.71.01.004 

 

Specifics and Vulnerabilities of the Timing Control 

in Cyber-Physical Systems 
 

Iliya Georgiev, Ivo Georgiev 

 

 
Abstract — Cyber-physical systems integrate powerful 

computing (real-time embedded system, operating system, 

applications, and Internet networking) and physical environ-

ment (advanced manufacturing cells, medical platforms, 

energetics aggregates, social and educational control). The 

reliable functionality depends extremely on the correct timing. 

Wrong timing because of buried malfunction or external 

tampering could be critical. The paper is some analysis of the 

vulnerable timing parameters that influence the precise 

processing. Expert estimation of the criticality of different 

timing parameters is given to support fault-tolerant design 

considering possible failures. 
 

Index Terms—cyber-physical systems, real-time, timing 

control, vulnerabilities, Internet of Things 

I. INTRODUCTION 

Accurate timing is one of the important requirements in 

cyber-physical systems, especially for real-time modes. 

Such timing constrains vary from soft real-time (functional 

deadlines are flexible and, in most cases, not fatal) to hard 

real-time (exact deadlines must be successful). Embedded 

systems control timed information flow to/from several 

sensors and actuators. All configuration works in local area 

network (LAN) and is open to the world by Internet. 

Timing control and possible failures are the motivation of 

the present analysis. The most sensitive timing parameters 

are discussed with the possible critical results. Timing 

control functions are distributed in almost all components of 

the system and the vulnerabilities in significant degree 

depend on the real-time modes stability and reliability. 

Corrupting timing values can result in functional 

compromising and even in catastrophic collapse of the 

environment and injuries of the service personnel. 

Timing parameters (execution time, deadlines, periods, 

clocks, scheduling quantum, timeout time, etc.) are just 

variables distributed in different places of the programs. 

There is no universal reliable way to protect such variables. 

For example, cryptography does not help because changing 

the encrypted value will generate the same functional 

corruption. 

In the literature there are a lot of publications that consider 

security of the cyber-physical systems. For the interested 

readers we would recommend some review publications [2, 3, 

4]. Our research in not an additional work in that area but 

addresses timing failures that could generate degrading delay 

and corruption of the whole system functionality. The paper is 

partly an extension of a conference paper [1]. 
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The manuscript is organized in nine sections. Section II 

presents some architectural features of ARM architecture 

that support real-time functionality. Next sections explain 

the addressed timing in real-time processing. Timing control 

vulnerabilities are discussed in section III. Multithreading 

specifics are in section IV. Section V emphasizes on 

network and Internet of Thing (IoT) common timing. 

Section VI characterizes the real-time operating system 

(RTOS). Real- time high-level programming considering 

trusted Java and C language libraries are in section VII. 

Section VIII provides brief discussion of some development 

approaches and expert view about the timing parameter’s 

criticality. Last section is the conclusion. 

II. ARCHITECTURAL SUPPORT 

Because of the internally driven timing, understanding the 

architecture of the embedded systems is important to create 

a real-time functionality. Cyber-physical systems receive 

and generate analog and digital information from/to the 

environment. On the other side they follow complicated 

networking protocols and perform Internet messaging and 

Web services. Such functional diversity needs precise 

timing on all levels. Computational power, timing and 

security are the main design challenges that can be achieved 

by contemporary instruction level architecture. ARM 

architecture [5] is prevailing for most microcontrollers that 

are under production with a diversity of peripheral devices 

oriented to the environment needs. ARM family of 

compatible microcontrollers has a common programmer’s 

model: 32 or 64-bit ALU, registers, status words, common 

memory map (read-only memory for programs and 

constants, main memory, single cycle read/write memory for 

the peripheral devices). 

For the interested readers we recommend the book of 

professor J. Valvano [6], which gives excellent view of the 

microcontroller’s structure and C and assembly languages 

programming. The ARM evolution provides additional 

functionality: new instructions and open-source libraries for 

secured and timed signal processing and networking [7]. 

ARM instruction level architecture adds important 

features: 

a. Flexible addressing modes for digital signal pro-

cessing that accelerate the conversion of the analog 

signal from time domain to frequency domain by 

Fourier transformation. Original Fourier transforma-

tion works in the space of the complex numbers. 

Other Fourier-derivative transformations work in the 

spaces of real or integer numbers. 

b. Arithmetic operations that perform saturation of the 

operands. Analog signals are digitalized by sampling 
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(amplitude values are taken for every time interval) 

and quantization (the amplitude values are presented 

as binary digits between lowest and highest value). 

Digitalization is characterized by a range (the 

distance between the lowest value and the highest 

value), precision (the number of bits to present the 

amplitude value) and resolution (the smallest value 

between two digits). The real measured amplitude 

could be greater than the highest value or less than 

the lowest value. In such cases saturation process is 

needed – for every amplitude outside the range the 

highest or correspondingly the lowest digital value is 

taken (the signal is saturated). Saturating instructions 

give significant gain in performance. 

c. Atomic combined instructions that are register-

memory arithmetic/logical instructions (remember 

historical CISC architecture!). They are load/store 

combined with addition, subtraction, exclusive-OR, 

AND instructions, i.e. two execute phases in one. 

d.  Synchronization atomic instructions to increase the 

fault-tolerance access to shared resources. There are 

two types of instructions: a. instructions for atomic 

access to the synchronization primitives (locks); b. 

instructions for synchronized processing of some 

data set by different independent threads that can run 

in the same processor or in different cores. 

e.  Cryptographic instructions for encryption/decryption 

procedures based both on symmetric cryptography 

and cryptographic hashing. 

f.  Memory protection instructions that define different 

non-overlapping regions of the memory space 

assigning some accessibility and permission flags. 

The regions are two types: secure or non-secure. 

Memory protection registers define the type of the 

regions, assigned control functions, base and limit 

addresses. Multiple regions can share the same 

attributes. The memory could be a normal memory 

(general-purpose instructions use it) and device me-

mory (input/output direct memory access operations 

use it). Every normal region can be assigned different 

attributes: cacheable or non-cacheable (write-through 

or write-back policy), sharable or non- sharable, 

executable or never-executable. Device memory 

attributes control the input/output stream: gathering 

or non- gathering merging in common transaction; 

reordering or non- reordering, early or non-early 

buffering. 

g.   Exception model that supports different types of 

unusual (or faulty) situation in the processor. 

Exception processing makes the running thread to 

stop, and a hardware supported handler occupies the 

processor. Reset exception is caused by power-down. 

Hard-fault exception has highest priority and cannot 

be masked. Supervisor call exception is activated by 

a special instruction that activates the OS kernel or 

some supervisor. System timer SysTick exception is 

generated by the timer itself or by the software. 

Interrupt exception is a signal from a peripheral 

device or generated by a thread or handler [8]. 

The whole system functionality is interrupt driven. Every 

interrupt type is supported by an interrupt handler whose 

starting address (vector) is provided in a vector table. The 

interrupts have priorities, and all of them can be masked but 

the failure ones. Timing precision in the intensive interrupt 

processing is the dominating requirement to guarantee the 

worst-case execution time (WCET). 

ARM real-time microcontrollers are integrated with a suit 

of peripheral devices that cover almost all input/output 

interfaces and local area networking. The bus hierarchy 

splits the fetch/execute processor cycle from the read/write 

input/output stream, which is synchronized by SysTick. 

Integrated peripheral devices consist of synchronized or not 

synchronized interfaces (could be also serial or parallel); 

others perform analog-to-digital/digital-to-analog conver-

sion and networking. The streams are controlled by separate 

timers and are connected to the sensors and actuators via 

programmable ports that can be switched between digital or 

analog signals. 

Networking of cyber-physical systems depends on timing. 

The local-area networks (LAN) are time-sensitive. 

Connection to the Internet and Web support is called 

Internet of Things (IoT) and must follow common timing. 

III. VULNERABILITIES OF THE TIMING CONTROL 

Timing control in cyber-physical systems needs to be 

adjusted to the real-time requirements. All subsystems have 

separate timing controls that are prone to malicious 

modification of the internal settings like tweaking the time 

to corrupt the system. Detailed analysis is needed to 

implement common timing. 

The timers that control the operations to the sensors and 

actuators are synchronized by the main clock. Clock 

generators are programmable devices that can change the 

parameters of the clock sequence and this is one of the most 

breakable processes. 

Main clock frequency can be changed by the programmer 

by simple change of the parameters in the control registers 

of the clock generator to increase/decrease the execution 

speed. Increasing the clock frequency helps to meet tight 

timing bounds, but the power consumption is high (so is the 

emitted heat) and the microcontroller becomes sensitive to 

interference and internal signal races. Slower execution 

gives better power efficiency and increases the reliability of 

the microelectronics. Secure clock frequency is directly 

connected to the timing control of the real-time IoT systems. 

The next formula is from [6] to illustrate the relationships 

in the software work. Equation (1) shows with some 

simplification that the power is linearly proportional to the 

main clock frequency. 

 Power = k * Fmain clock, (1) 

The coefficient k generalizes some technology specifics. 

With the assumption that one instruction is synchronized 

with two clocks, the software work dependence on the 

speed/power ratio is presented in (2). 

Programs Workload = Number of executed instructions*  
* ½ Fmain clock = 

= Number of executed instructions * ½ Power/k (2) 

Main clock generator has different signal sources: 

highest-stable piezo or thermostable multi-oscillator. 
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Several registers provide bit-by-bit control to switch 

on/off the power and to select the frequency divider or 

multiplier selecting up to thirty-two frequencies. 

Timers (8 to 32 in a system) are devices to synchronize 

almost all operations of the sensors and actuators: periodic 
interrupt requests, analog or digital signal sequence from the 

sensors, serial or parallel outputs. 
Timers are implemented by simple procedures based on 

count-down counters that are decremented by the clock or 

multiples of the clock. Enable/disable flag activates the 
timer, after that the initial value of the counter is loaded. At 

the beginning the timer is disabled to store the initial value. 

After initialization, the timer is enabled. Counting down has 
several modes. When the counter reaches number zero, it is 

initialized again. Such procedure is overly sensitive because 
wrong initial value or wrong mode can destroy the whole 

input/output operation and further the thread or the current 

handler. 

IV. TIMING IN MULTITHREADING 

Standardized view of computing consists of two sets: a set 
of processes (plus threads and handlers); a set of resources 

(CPU time, memory, file structure, interrupt parameters, 
access rights, semaphores, etc.) that are manipulated in 

timed multithreaded scenario. Multithreading dynamics in 

real-time systems depends strongly on exact timing 
parameters that are risky for the whole functionality. Main 

sensitive parameters are execution time, possible deadline, 

and periods. Every thread receives some CPU time (time 
quantum or slice) to run based on the priority and aging 

policy. Some of the threads are periodical, they work after 
some periodical signal from a timer of from a environment. 

Execution time can be explicitly declared as a parameter, 

but most developers use it implicitly to keep it flexible. 
Some applications (so the RTOS) make occasional check of 

the running execution time and compare it with a stored 

parameter. 

Thread’s deadlines are analyzed during every time 

quantum in which the thread runs. The deadlines could be 
changed during the scheduling or interrupt processing. 

Deadlines are checked on different stages. RTOS makes 

estimation during every scheduling session whether the 
deadline could be met (only for hard real-time threads). The 

Run-Time-Environment (RTE) manipulates the deadlines of 

the user threads. Thread executable code uses prediction 
algorithms for possible deadline violation. 

Periods of the periodical threads are stored parameters. 

The timer attached to check the periods must be adjusted 

with the astronomical time. Estimated execution time, 

period, and deadline times can be organized in groups. They 

may be fixed or flexible and must be protected by RTOS, 

RTE or by the thread or the handler. Multi-core imple-

mentation needs deeper protection of that group [9]. 

Timing control becomes difficult when threads and even 

some block statements are synchronized to access shared 

data. Isolation (mutual exclusion) of the shared data 

(resources) in all cases is based on simple variables – locks 

(different lock names are used in programming development 

environments - semaphore, mutex). Locks keep binary state 

(free/busy) and can protect some resource (data locks) or 

can block cooperative execution of some protected method, 

which is called monitor. Synchronization methods 

(functions) are offered in almost all application 

programming interfaces under different names, but their 

internal implementation consists of two base functionalities. 

The function wait() exchanges a register that keeps the 

busy state with a lock value in the memory; if the loaded 

lock is available (free), the critical section can be executed; 

in case of busy state, they are two scenarios: a. busy waiting 

– the lock is spinning and the thread loops; b. non-busy 

waiting – the thread terminates and goes to a blocked state. 

Spinning locks are mostly used in short critical sections in 

the kernel of the operating systems. Non-busy waiting 

scenario is accepted for most user threads. 

The function signal() – sometimes it is called notify() - 

releases the lock again by exchange a register value (now 

free) with the lock variable that was busy during the 

execution of the critical section. 

Lock variables are retrieved and checked very often, and 

they must be stored in the main memory preferably in some 

protected sectors. 

Each synchronizing function must be atomic, but the 

register-memory swap occupies two or three instructions. 

Interrupt mechanism allows interrupt after every instruction, 

which needs special instructions for such exchange. Some 

microcontrollers include atomic swap instruction (for 

example SWP in ARM) or load/store using hardware 

protected memory sections. Synchronization methods wait() 

and signal() should be used in pairs and not swapped. 

Recommended approach is not to cache them in the 

instruction cache. 

In digital signal processing and other important functions, 

the running model is the single program-multiple data, 

where several independent threads make the same 

processing over different pieces of big data. The threads can 

terminate their current work at different moments, but they 

must wait for the others. Here some barrier instruction(s) 

synchronize mutual processing. Barrier could be some event 

like end of memory operations in a thread or some count (so 

called barrier counter) that is loaded with the number of the 

threads. Every execution of the instruction decrements the 

counter and if the counter is not zero, the thread waits for a 

zero counter. If the architecture supports protected memory 

sectors, more advanced barrier instructions are efficient with 

different signals to wait - end of loads or stores, completion 

of memory accesses. 

Timing sensitivity increases in distributed cyber-physical 

configuration, where sensors and actuators are grouped 

(even swamped) in separate LAN. The timing parameters 

should be controlled periodically following common 

astronomical time. Writing precise critical sections is a 

challenge because the proved algorithms must be mixed 

with some time control. The designers usually try to follow 

well proved standard synchronization problems (Producer-

Consumer, Dining- 

Philosophers, Readers-Writer, Cigarette-Smoker) and 

considering time makes those problems more complicated. 

Timing together with deadlock-free programming is 

another development problem. Deadlock is when some 

thread receives a resource and needs another that is used by 

other thread, which on its side needs the resource of the first 

thread. Conditions are no preemption and only the thread 

can release the occupied resource. Deadlock-free prog-

ramming cannot be supported by RTOS, because prevention 
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and avoidance need search on huge allocation graphs during 

every scheduling cycle. 

The RTOS and the applications can try to detect the 

deadlocks and to save the system functionality ([10] shows 

some method). The implementation drawbacks are no 

timing control consideration, difficult to debug, slowing the 

execution time, risky. 

Serialization of the thread’s execution is the most 

effective way to write deadlock-free real-time programs if 

the WCET allows it. A thread is not supposed to request a 

resource that is currently used by some other thread. In this 

case the thread must release all held resources and request 

after some delay everything needed. 

V. NETWORKING AND INTERNET OF THINGS 

Timing control puts additional trends in the diversity of 

networking hardware, protocols, and software layers. Let us 
consider a manufacturing cell that has a group of robots, 

machinery, and transport devices. The robots usually are 

connected in a synchronized network with a restricted 
length, most popular is the CAN technology [11]. The robot 

network and the other devices are connected in lengthy 

Ethernet network to the microcontroller of the embedded 
IoT system. The IoT-based system is also an Internet host 

and performs all Internet layers and protocols. It supports 
application specific protocols for remote procedure call and 

message exchange. Timing design must follow well-proved 

sequence from the manufacturing cell environment through 
the control processing and further by Web services to the 

cloud. The timing values of all stages must be calculated, 

and some maximum latencies to be practically proven. On 
all nodes some bandwidth control must upgrade the 

conventional networking. The LANs are now time-sensitive, 

and the Ethernet layer is time-reserving [12].  
Timing control synchronizes the timing behavior in real-

time communication by standardized declaring of bandwidth 
and time intervals. 

Internet protocols provide authentication and key 

management (by public key encryption), confidentiality (by 
secret key cryptography), message integrity (by crypto-

graphy hashing) services. IoT requires timing that the 

standard Internet layers do not provide. Real-time version of 
the Internet Protocol (IP) layer tries to meet such timing 

setting some parameters in the IP headers that give priority 
to the packets. The given priority and improved congestion 

control are to provide quality of service, which guarantees 

“best effort” (the question is how “best”). For tight WCET 
the best effort policy is not enough, and predictable 

buffering can help the time estimation. 

In cloud-based cyber-physical systems, the sensors and 
actuators are remote to the microcontroller and are 

structured in clusters with autonomic control. Time control 
is organized separately in the clusters and the main system 

and is driven by the common astronomical time. 

VI. RTOS SPECIFICS 

RTOS have similar functions as conventional operating 

systems: multiprocessing and multithreading, memory 

management, scheduling, synchronization. Additionally, it 

can support hard and soft real-time multithreading that 

follows additional requirements [13, 14]: a. process request 

for service of the external events at strictly defined timing 

latency; b. predictable time to respond to the interrupts; c. 

reliable continuous processing after some failure; d. user 

reconfigurable configuration based on the application 

specifics and the environment; e. support of real-time 

constraints that are dictated by the implemented control 

functions or external devices; f. dynamical change of the 

priorities according to the deadlines. 

On the other side, control functions of RTOS have been 

reduced to ensure that the critical application runs in 

predictable computing container. The correct error-free 

functionality of the cyber-physical system is full response-

bility of the designer. RTOS kernel supports only the 

memory management, multithreaded scheduling and partly 

synchronization. 

Input/output streams are driven by the applications but 

not by RTOS, which usually manipulates only the system 

timer and the hardware failures handlers. Timing control is 

distributed in the application’s stack that is important to 

track the execution time and the deadlines. Obviously, the 

development does not rely on the protection of the operating 

system and this could be one of the weakest parts of the 

design. 

The application does not need to call the operating system 

to process the exceptions and interrupts. Change of the 

priorities and masks is by privileged operations that can be 

done by the RTOS or special interrupt handler supervisor. 

Switch context to interrupt handlers is by vector address and 

is mixed hardware-software procedure. 

Protection of thread’s interference is only partly 

supported by the RTOS. The application threads can execute 

all instructions including privileged ones. Threads can 

directly access protected or non-protected memory areas 

according to the desired configuration. Memory protection 

is minimal. 

Thread scheduling is a RTOS procedure, and it is based 

on priorities. The scheduling algorithm can be configured 

according to the specifics of the system. Soft real-time 

threads are selected for execution by classical round robin 

priority scheduling with aging of the priorities. Hard real-

time scheduling algorithm is the rate-monotoning for 

periodical threads and is based on the short-first principle 

(the priority becomes higher for shorter periods). Earliest 

deadline first scheduling recalculates the deadlines during 

every scheduling session and runs the thread with the 

nearest deadline. The latter has unpredictable high overhead 

and can influence the timing control. 

Timing controls in RTOS are time quantum, timeout 

values and astronomical time. 
Time quantum for execution is calculated according to the 

priorities and average CPU burst that can be given or 
dynamically predicted. During the scheduling session the 

quantum and the priorities are dynamically changed 

following the accepted aging scenario to keep a relative 
fairness. 

Timeout values are risky selection and sometimes under-

estimated during the global timing control. Information 

exchanged with the peripheral devices can be time-outed if 

the operation is suspiciously long. Timeout periods are 

selected after long practical estimation in real load of the 

environment. Wrong timeout values can dangerously violate 

the timing of the system. 

Astronomical time must be followed by all subsystems. 

The RTOS, the threads and all networking nodes must 

regulate their procedures according to the international 
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atomic time. The cyber-physical system especially connec-

ted to the cloud must follow a protocol to synchronize the 

astronomical time. The protocol collects information from 

the neighbors’ stations and sets a correction value. Fault- 

tolerant sessions should prevent the wrong value 

distributing. RTOS do not provide reliable functions to track 

the execution time. The designers can specify application-

level tracing of the execution time at some degree – some 

examples are given in [15]. But such approaches are not 

efficient and difficult to implement and debug. 

VII. SPECIFICS IN REAL-TIME HIGH-LEVEL  

PROGRAMMING 

The functionality of cyber-physical systems is 

incorporated in a complex software that is organized in 

different vertical and horizontal levels. The complete 

software stack consists of general-purpose applications for 

IoT, specific applications driving the whole cyber-physical 

functionality, run-time environments (RTE) of the high-

level language used, RTOS with a kernel and supporting 

system programs, libraries, drivers, and interrupt handlers to 

control the peripheral devices. 

Application suite is written in different programming 

languages that can support on one side Web technologies 

and, on the other side, can control variety of sensors and 

actuators in dynamically changing environment. 

Hierarchical implementation for example uses Java on the 

highest IoT level, C language and assembly language for the 

lowest level (hardware-dependent libraries, drivers, and 

interrupt handlers). Most of the immensely deployed open- 

source Android-based IoT-based systems provide such 

development hierarchy: Java libraries of classes, Java RTE, 

C language libraries, Linux kernel and drivers, assembly- 

language libraries, interrupt handlers (general purpose and 

hardware specific). 

Considering correct timing behavior of the system, the 

designers are supposed to understand very deeply how the 

high-level programs are translated and executed and to try to 

isolate the timing control from the general processing. 

Isolation is a traditional approach to increase the computing 

security. Classical isolated technologies are memory protect-

tion (hardware and software implemented), access control 

(OS controls the resources access from different processes), 

firewalls (networking layers level and application driven). 

For real-time trusted programming we can briefly explain 

efficient combination of low-level secure libraries (usually 

in C language) and Java language. Such technologies gain 

significant support in combination with the soft real-time 

operating system Android, which is considered the 

“operating system of IoT”. 

Secure library technologies are tightly connected to the 

processor functions. For ARM microcontrollers radical 

isolation offers the popular ThrustZone [16, 17], which is 

efficient because of the architectural support. The main 

computing components (hardware, data, software) are 

virtualized into two development containers: trusted and 

non- trusted. Trusted as well as non-trusted computing (also 

called secure and non-secure worlds) have separate 

hardware, data, and software; both can run on the same 

processor in different time quanta. Trusted resources are 

protected, and non-trusted software cannot use them but 

must call for a service from a secure (trusted) monitor. 

Trusted software could be controlled by a supervising 

library or even tiny OS module with a separate kernel. Non-

trusted container may consist of conventional OS (for 

example Android) and applications. 

For both worlds ARM hardware maintains several states 

that define what is the processor mode (user, supervisor, 

system, interrupt). A bit in the secure configuration register 

declares the world (secure and non-secure). The state gives 

levels of privileged access to the resources. The privileges 

levels are four. The highest level is only for the trusted 

monitor. The other levels are separated for both worlds: 

lowest level for the applications, next levels for the separate 

operating system (or supervisor in the trusted world). 

Memory space is divided between trusted and non-trusted 

computing. The trusted memory regions cannot be accessed 

by the non-trusted programs. The secure monitor is the key 

firmware (TrustZone library) in the trusted functionality. 

The ARM architecture has a separate instruction to call the 

monitor – Secure Monitor Call (SMC). Executing SMC 

activates switch context, which is hardware supported to 

save the registers and the programming counter. Secure 

monitor performs important functions: a. supervised power 

management; b. secure bootstrap of the kernels of the 

operating systems; c. SMC handling that fully separates both 

worlds; d. common management of the system; e. control of 

some exceptions. Both worlds exchange shared data (in 

registers or in the memory) only under control of the secure 

monitor. 

Java secure programming needs deep understanding of 

the multithreading organization. Java application, which is 

invoked for execution, is converted into a process with one 

basic thread. The process could be considered as a container 

of the execution code and the process resources. The basic 

thread runs the execution code and shares all the resources. 

Additionally, it has its own execution resources (prog-

ramming counter, stack, program status words or registers). 

The basic thread can generate new user threads (subclasses 

of the Thread class). Every user thread has separate 

programming counter, stack and state information and 

shares all the resources of the process. Designers can declare 

ten priorities of the user threads but the RTE does not 

guarantee its exact execution. 

The designers must understand the duality of the 

scheduling mechanism. On one side the Java RTE follows a 

state diagram for scheduling only of the user threads 

independently from the OS. The Java state diagram supports 

the following states: a. New - just created user thread; Ready 

- the thread is activated by a start() method and is in a pool 

or a queue of all ready user threads; Runnable - the thread is 

just activated by a run() method or returns from a blocked 

state after successful I/O operation or releasing a lock; 

Blocked - the threads is blocked: either by wait() or sleep() 

methods, or by activated I/O operation, or it is time-outed; 

Dead - run() method terminates. 

On the other side, operating system follows different 

scheduling state diagram for all active threads. Java 

Runnable user thread can receive the Running state from the 

OS and will start running in the processor. 

Standard Java classes have some obstacles to support 

real-time programming. The designer must consider that 

very often a Java runnable thread could be blocked 

unpredictable way by the operating system, and this can 

influence the overall timing. Additional indeterminism 
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generates the garbage collector, which is a user thread with a 

highest priority and preempts the running thread. Standard 

Java implementation also has a limited view to the memory 

– the class variables could only use references to the 

memory. And finally, thread interaction is limited. 

Java real time specification extends the standard 

definition and supports deterministic execution and access to 

the memory and the hardware configuration. 

Memory management declares new memory areas that 

can be accessed by objects declared in those areas: 

ImmortalMemory (objects live until the end of the appli-

cation) and ScopedMemory (objects are dereferenced only 

when they exit the area). Practical recommendation is to 

define the timing parameters in such memories: constant 

timing parameters in immortal memory and changeable 

timing variables in scoped memory. 

Real-time thread management is based on new classes 

and includes preemption with 28 new priorities with respect 

to the deterministic garbage collector. Real-time threads 

could be periodic or aperiodic with corresponding release 

parameters. The user threads are now three types: 

a. Regular Java threads that are subclasses of the 

Thread class. 

b. RealtimeThreads that keep some deterministic 

latency, can cooperate and interrupt the garbage 

collector. 

c. NoHeapRealTime threads cannot access the heap and 

are mostly not preemptive by the garbage collector. 

Such threads can be successfully used to manage the 

sensitive timing parameters especially for network 

time quantum. 

The real-time threads must be short and could be 

combined only with threads that follow high-resolution 

time. It is not recommended to create objects in those 

threads that do not manipulate timing behavior. 

The scheduling of the user threads strictly enforces true 

and fixed priorities. The threads are scheduled in a 

predictable way for the same conditions. Priority inheritance 

prevents priority inversion and ensures that the higher 

priority thread will be executed without latency. 

Interrupt handlers are converted into preemptive real-time 

threads that can participate in the priority hierarchy like any 

other thread. The interrupt latency is predictable low. 

Interthread communication is one of the most challenging 

topics in real-time programming especially in real-time Java 

where the handlers are threads. The cooperative mechanism 

is based on a Boolean flag in every thread that can be set 

from another thread by an interrupt() method, which is only 

an invitation for interruption. A thread, which issues the 

interrupt, tries to communicate to the interrupted thread by 

setting the flag. If the interrupted thread executes some 

blocking method, it can terminate and go into a blocking 

state. In case of non-blocking method, the interrupt request 

can be analyzed, and this is a signal for additional 

processing. Interruption supports cooperative actions to 

reorganize any processing in progress, recovers some data 

and initiates other, notifies other activities and afterword 

terminates. 

Communication is concentrated in InteruptedException 

which must be thrown and analyzed very carefully [18]. 

Different ways are recommended to process such exception 

in an invocated hierarchy of methods. Ignoring the interrupt 

request is strictly not recommended in real-time 

programming. If the invoking hierarchy contains blocking 

methods, then the most useful technique is to propagate the 

exception to the invoking blocking method without catching 

it. In case of catch clause, some cleaning or thread-specific 

work can be done before rethrowing the exception. 

Performing some calculations before rethrowing is the most 

reliable approach. After needed processing the current 

method can restore the just cleared flag and invoke 

interrupt() again to inform the method higher in the call 

stack that some interrupt took place. Recommendation for 

methods that do not throw the exception is to re-interrupt the 

current thread, which is some initialization of the flag and is 

a popular technique in interthread communication. 

Real-time systems run in a sophisticated environment 

with a significant number of signals that are not deter-

ministic in time and frequency. Java provides asynchronous 

event handling (AsyncEvent and AsyncEventHandler) and 

transfer of control by AsynchronouslyInterruptedExceptions. 

AsyncEventHandlers are special threads that can be bounded 

with different events (several AsyncEvents) and can be 

scheduled and executed asynchronously [19]. 

Signals from sensors/actuators need immediate action to 

switch the running execution to an appropriate service. Such 

transfer of control is done by processing of the 

AsynchronouslyInterruptedExceptions, which can be thrown 

explicitly by firing or by interrupting the current thread in 

some pending techniques. The asynchronous interrupt 

becomes pending in case when the current thread executes a 

deferred section. Propagating a pending asynchronous 

interrupt happens later during the next invocation of the 

asynchronously interruptible method. An asynchronous 

exception can override all other exceptions at the same time. 

Several asynchronous exceptions can be generated during 

the execution of the first of them. 

Cooperative interruption mechanism can provide flexible 

interthread communication for control transfer and 

necessary cancelation of the current processing. Real 

interruption takes place not immediately but after the 

decision to cancel or to continue processing in the scope of 

the current real-time thread. The interruption can be deferred 

to perform specific action without violating the functional 

integrity. In case of not necessary interruption the status of 

the interruption flag must be restored and this way the 

calling method cannot lack the knowledge of the 

interruption. Some popular techniques are also to restore 

some timing parameters that influence the current thread. 

Asynchronous transfer of control based on exception 

looks like a strange technology, but it is powerful in case of 

careful programming. Deferring, pending, cancelation of the 

asynchronous exceptions can generate some indeterminism 

in the timing behavior of the real-time processes. Interrupt 

handlers are threads that can be preempted, which makes the 

transfer of control using exceptions incredibly challenging 

with a floating latency, and not deadlock-free. 

Additional specific is the attempt to interrupt a thread 

that runs in a monitor (synchronized method or block 

statement). The exceptions and the restoring of the timing 

parameters are postponed. 
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VIII. DISCUSSION 

Recent attempt of analysis is based on several examples 

of system corruption because of some weak timing control. 

The accumulated practical experience of a team of 

developers is the motivation to share partly some techniques 

to achieve smoot timing. 

Designers must put the critical timing parameters in 

mostly protected address spaces. We already mentioned that 

Java real-time programming provides two protected 

memories but manipulating the data in those memories 

needs more professional skills. Other development stacks 

provide similar techniques. IoT needs web programming, in 

most cases Web services are based on XML vocabularies, 

which makes the needed exchange of timing information 

more vulnerable. 

In low level programming (C language and assembly 

language) threads and handlers store the timing parameters 

in memory protected sections. Handlers of input/output 

interrupts must avoid manipulating the timing variables in 

the memory area for the peripheral devices because data 

from the environment could be manipulated. In C99 

language there is a volatile keyword, which informs the 

compiler and RTE, that this variable is exchangeable 

between different parts of the whole functionality: 

a. from/to ports where the in/out values are independent 

from the software control; 

b. as global variables used to cooperate information 

between the interrupt handlers and the main thread. 

Timing control of the most peripheral devices is 

organized by separate control registers. Dynamical change 

of the timing bounds is performed by logical instruction 

(AND, OR, XOR) using some masks. Let us present some 

example of changing the main clock frequency (all timers 

depend on main frequency). The following simple code 

shows how to manipulate the main frequency (we 

recommend the presentation in [5]). The SYSCLOCK is a 

control register that has bits to manipulate the main clock 

frequency. The next C- language statement sets the clock 

generator source: 

SYSCLOCK = SYSCLOCK & ~0XFFFFFF0F;  
// select the oscillator 

In ARM assembly language the instructions are the 

following: 

LDR R1, = SYSCLOCK ; load the address 

LDR R0, [R1] ; store SYSCLOCK 

AND R0, R0, #0x000000F0 ; change the field 

The AND instruction uses immediate operand stored in the 

instruction. Loading the instruction in the instruction cache 

is vulnerable - the immediate operand could be corrupted by 

some attack. It is recommended not to use immediate 

operands and to store such constants in a memory protected 

area or in ROM. 

Widely accepted prevention of timing parameters is not to 

use recursion. Recursion pushes partial calculated values in 

the stack, which needs uploading of the stacked data in the 

data cache. Switch context after preemptive interrupt can 

leave the timing values in the cache open to some malicious 

change. Here the designer must wind down the cache to the 

memory or to use non-cacheable memory for timing control. 

RTOS kernel provides some memory consistency protection 

that issues the requirement to execute the timing control in 

the threads that run in the core. Drastic approach in avionics 

system is to run the time manipulating threads only 

in one core, the other cores run utility code. 

Micro-rebooting (after fault or periodically) to recover 

the stable state is another technique, when the system runs in 

noisy environment. 

We share in Table 1 our view how critical is the violation 

of the timing control by corrupting different parameters. 

TABLE 1 

CRITICALITY OF THE TIMING PARAMETERS 
 

Timing parameter 

Critical 

(0 – not critical, 
10 – catastrophically critical) 

Main clock frequency 8 to 10 (catastrophic failure). 

Time parameter in the System 

Timer, that synchronizes the 
information exchange with 

peripheral devices 

6 (control operations could be 

destroyed). 
9 (progressive degradation of the whole 

functionality). 

Timer’s control parameters 7 (input/output failures), 

5 (partial degradation). 

Time quantum 6 (WCET influence, violated fairness, 

starvation, and deadlock possible). 

Thread deadline, execution 

time, period of the periodical 
threads 

6– 8 (for the current thread).  

3 to 5 (for the whole functionality). 
6 (WCET not met of some current 

thread). 

Timeout parameters 6-8 (chaotic execution of some 

operations, degradation). 

Change of the user thread 

priority 

4 (partial or global change of the 

timing). 

Bugs that prevent immediate 

action after sensor/actuators 

signal 

4 (partial disfunction of the current 

thread, delay that can violate the 

WCET). 

Lock’s swap 5 (shared data not available, functional 
degradation of the current thread). 

Barrier counters (barrier 

events) 

4-6 (wrong execution, data corruption). 

wait() and signal() functions 7 (shared data destroy, possible 

deadlock). 

Deadlock’s prevention 5 (blocking of a thread). 

Corrupted interthread 
asynchronous communication 

5 (the dialog with some sensor/actuators 
could be timed out). 

Astronomical time 4-7 (functional degradation in time, 
could be recovered at networking level). 

LAN Networking: 

– mutual declaration of the 

time intervals. 

– bandwidth reservation. 

Performance disbalance:  
5 (data frames corruption, congestion 

possible). 

6 (more littering, stalled sessions). 

Internet – real time IP and 

QoS. 

5 (heavy retransmission, disbalance of 

the information, packet loss). 

We have considered mostly systems in advanced and 

cloud-based manufacturing. Here we can explain our 

motivation and some comments about the given values of 
the degree of criticality. 

Most catastrophic failure is the change of the main clock 

frequency – very often it happens because of bugs. The table 

for frequency selection and the modes need special concern. 
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All input/output operations are timed. The System timer 

supports all operations and interrupts with integrated devices 

and timing change could be catastrophic. A number 

(hundred and more) peripheral devices are integrated: serial 

and parallel ports (programmable devices that provide 

analog or digital connection to the selected devices), several 

timers to be selected for every input/output operation, 

synchronized and hand-shaking interfaces, analogue compa-

rators, digital- to-analogue and analogue-to-digital conver-

ters, power width modulators, USB, Ethernet, and Controller 

Area Network, etc. Change the timing fields in control 

registers destroys the current operation and during the time 

the global behavior. 

Time quantum is dynamically changed during the 

scheduling. It is an internal value in the kernel of RTOS, but 

it is loaded as a timeout parameter and can be maliciously 

changed. 

Period, execution time, deadline, user thread priority are 

characteristics of some thread and usually have influence on 

that thread but again after some time their influence 

becomes dominating especially for the periodic threads. 

Synchronization parameters (locks, barrier counters, 

synchronization functions) are important for the whole 

functionality because they change the right distribution of 

the resources during the time. 

Finally, LAN networking and Internet timing depend on 

factors that are not easy to be controlled by the running 

RTOS and applications and need special attention. 

Astronomical time must be adjusted periodically. 

Timeout check of the QoS parameters needs to be imple-

mented – it is an overhead procedure. 

IX. CONCLUSION 

Timing of cyber-physical systems with real-time and IoT 

functionality needs more detailed strategy during the 

architectural development. Significant corruption is possible 

by underestimation of the timing controls. 

In this paper, we have focused on the following topics. 

We emphasize that the timing control depends on some 

more important timing parameters (main clock frequencies, 

the group execution time-deadlines-periods, networking 

bandwidth and time intervals, synchronization locking, 

astronomical time synchronization, deadlock time influence, 

etc.). 

Development trends are supposed to accelerate the 

stability of the timing by usage of real-time oriented 

programming techniques. Classical software is to be 

plugged- in with some patches where a balance between 

RTOS and application specifics guaranty the reliable timing 

functionality. 

The discussed processing related to the timing control 

hopefully would provide structured knowledge and assis-

tance during the system development and testing lifecycle. 
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