
PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021 15

https://doi.org/10.47978/TUS.2021.71.01.004

Specifics and Vulnerabilities of the Timing Control

in Cyber-Physical Systems

Iliya Georgiev, Ivo Georgiev

Abstract — Cyber-physical systems integrate powerful

computing (real-time embedded system, operating system,

applications, and Internet networking) and physical environ-

ment (advanced manufacturing cells, medical platforms,

energetics aggregates, social and educational control). The

reliable functionality depends extremely on the correct timing.

Wrong timing because of buried malfunction or external

tampering could be critical. The paper is some analysis of the

vulnerable timing parameters that influence the precise

processing. Expert estimation of the criticality of different

timing parameters is given to support fault-tolerant design

considering possible failures.

Index Terms—cyber-physical systems, real-time, timing

control, vulnerabilities, Internet of Things

I. INTRODUCTION

Accurate timing is one of the important requirements in

cyber-physical systems, especially for real-time modes.

Such timing constrains vary from soft real-time (functional

deadlines are flexible and, in most cases, not fatal) to hard

real-time (exact deadlines must be successful). Embedded

systems control timed information flow to/from several

sensors and actuators. All configuration works in local area

network (LAN) and is open to the world by Internet.

Timing control and possible failures are the motivation of

the present analysis. The most sensitive timing parameters

are discussed with the possible critical results. Timing

control functions are distributed in almost all components of

the system and the vulnerabilities in significant degree

depend on the real-time modes stability and reliability.

Corrupting timing values can result in functional

compromising and even in catastrophic collapse of the

environment and injuries of the service personnel.

Timing parameters (execution time, deadlines, periods,

clocks, scheduling quantum, timeout time, etc.) are just

variables distributed in different places of the programs.

There is no universal reliable way to protect such variables.

For example, cryptography does not help because changing

the encrypted value will generate the same functional

corruption.

In the literature there are a lot of publications that consider

security of the cyber-physical systems. For the interested

readers we would recommend some review publications [2, 3,

4]. Our research in not an additional work in that area but

addresses timing failures that could generate degrading delay

and corruption of the whole system functionality. The paper is

partly an extension of a conference paper [1].

Iliya Georgiev is with IEEE, Denver section, Colorado, USA

(e-mail: ilgeorg@ieee.org).

Ivo Georgiev is with Metro State University of Denver,
P.O. Box 173362, Colorado, USA, (e-mail: igeorgi1@msudenver.edu).

The authors declare no conflict of interest.

The manuscript is organized in nine sections. Section II

presents some architectural features of ARM architecture

that support real-time functionality. Next sections explain

the addressed timing in real-time processing. Timing control

vulnerabilities are discussed in section III. Multithreading

specifics are in section IV. Section V emphasizes on

network and Internet of Thing (IoT) common timing.

Section VI characterizes the real-time operating system

(RTOS). Real- time high-level programming considering

trusted Java and C language libraries are in section VII.

Section VIII provides brief discussion of some development

approaches and expert view about the timing parameter’s

criticality. Last section is the conclusion.

II. ARCHITECTURAL SUPPORT

Because of the internally driven timing, understanding the

architecture of the embedded systems is important to create

a real-time functionality. Cyber-physical systems receive

and generate analog and digital information from/to the

environment. On the other side they follow complicated

networking protocols and perform Internet messaging and

Web services. Such functional diversity needs precise

timing on all levels. Computational power, timing and

security are the main design challenges that can be achieved

by contemporary instruction level architecture. ARM

architecture [5] is prevailing for most microcontrollers that

are under production with a diversity of peripheral devices

oriented to the environment needs. ARM family of

compatible microcontrollers has a common programmer’s

model: 32 or 64-bit ALU, registers, status words, common

memory map (read-only memory for programs and

constants, main memory, single cycle read/write memory for

the peripheral devices).

For the interested readers we recommend the book of

professor J. Valvano [6], which gives excellent view of the

microcontroller’s structure and C and assembly languages

programming. The ARM evolution provides additional

functionality: new instructions and open-source libraries for

secured and timed signal processing and networking [7].

ARM instruction level architecture adds important

features:

a. Flexible addressing modes for digital signal pro-

cessing that accelerate the conversion of the analog

signal from time domain to frequency domain by

Fourier transformation. Original Fourier transforma-

tion works in the space of the complex numbers.

Other Fourier-derivative transformations work in the

spaces of real or integer numbers.

b. Arithmetic operations that perform saturation of the

operands. Analog signals are digitalized by sampling

mailto:ilgeorg@ieee.org
mailto:igeorgi1@msudenver.edu

16 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

(amplitude values are taken for every time interval)

and quantization (the amplitude values are presented

as binary digits between lowest and highest value).

Digitalization is characterized by a range (the

distance between the lowest value and the highest

value), precision (the number of bits to present the

amplitude value) and resolution (the smallest value

between two digits). The real measured amplitude

could be greater than the highest value or less than

the lowest value. In such cases saturation process is

needed – for every amplitude outside the range the

highest or correspondingly the lowest digital value is

taken (the signal is saturated). Saturating instructions

give significant gain in performance.

c. Atomic combined instructions that are register-

memory arithmetic/logical instructions (remember

historical CISC architecture!). They are load/store

combined with addition, subtraction, exclusive-OR,

AND instructions, i.e. two execute phases in one.

d. Synchronization atomic instructions to increase the

fault-tolerance access to shared resources. There are

two types of instructions: a. instructions for atomic

access to the synchronization primitives (locks); b.

instructions for synchronized processing of some

data set by different independent threads that can run

in the same processor or in different cores.

e. Cryptographic instructions for encryption/decryption

procedures based both on symmetric cryptography

and cryptographic hashing.

f. Memory protection instructions that define different

non-overlapping regions of the memory space

assigning some accessibility and permission flags.

The regions are two types: secure or non-secure.

Memory protection registers define the type of the

regions, assigned control functions, base and limit

addresses. Multiple regions can share the same

attributes. The memory could be a normal memory

(general-purpose instructions use it) and device me-

mory (input/output direct memory access operations

use it). Every normal region can be assigned different

attributes: cacheable or non-cacheable (write-through

or write-back policy), sharable or non- sharable,

executable or never-executable. Device memory

attributes control the input/output stream: gathering

or non- gathering merging in common transaction;

reordering or non- reordering, early or non-early

buffering.

g. Exception model that supports different types of

unusual (or faulty) situation in the processor.

Exception processing makes the running thread to

stop, and a hardware supported handler occupies the

processor. Reset exception is caused by power-down.

Hard-fault exception has highest priority and cannot

be masked. Supervisor call exception is activated by

a special instruction that activates the OS kernel or

some supervisor. System timer SysTick exception is

generated by the timer itself or by the software.

Interrupt exception is a signal from a peripheral

device or generated by a thread or handler [8].

The whole system functionality is interrupt driven. Every

interrupt type is supported by an interrupt handler whose

starting address (vector) is provided in a vector table. The

interrupts have priorities, and all of them can be masked but

the failure ones. Timing precision in the intensive interrupt

processing is the dominating requirement to guarantee the

worst-case execution time (WCET).

ARM real-time microcontrollers are integrated with a suit

of peripheral devices that cover almost all input/output

interfaces and local area networking. The bus hierarchy

splits the fetch/execute processor cycle from the read/write

input/output stream, which is synchronized by SysTick.

Integrated peripheral devices consist of synchronized or not

synchronized interfaces (could be also serial or parallel);

others perform analog-to-digital/digital-to-analog conver-

sion and networking. The streams are controlled by separate

timers and are connected to the sensors and actuators via

programmable ports that can be switched between digital or

analog signals.

Networking of cyber-physical systems depends on timing.

The local-area networks (LAN) are time-sensitive.

Connection to the Internet and Web support is called

Internet of Things (IoT) and must follow common timing.

III. VULNERABILITIES OF THE TIMING CONTROL

Timing control in cyber-physical systems needs to be

adjusted to the real-time requirements. All subsystems have

separate timing controls that are prone to malicious

modification of the internal settings like tweaking the time

to corrupt the system. Detailed analysis is needed to

implement common timing.

The timers that control the operations to the sensors and

actuators are synchronized by the main clock. Clock

generators are programmable devices that can change the

parameters of the clock sequence and this is one of the most

breakable processes.

Main clock frequency can be changed by the programmer

by simple change of the parameters in the control registers

of the clock generator to increase/decrease the execution

speed. Increasing the clock frequency helps to meet tight

timing bounds, but the power consumption is high (so is the

emitted heat) and the microcontroller becomes sensitive to

interference and internal signal races. Slower execution

gives better power efficiency and increases the reliability of

the microelectronics. Secure clock frequency is directly

connected to the timing control of the real-time IoT systems.

The next formula is from [6] to illustrate the relationships

in the software work. Equation (1) shows with some

simplification that the power is linearly proportional to the

main clock frequency.

 Power = k * Fmain clock, (1)

The coefficient k generalizes some technology specifics.

With the assumption that one instruction is synchronized

with two clocks, the software work dependence on the

speed/power ratio is presented in (2).

Programs Workload = Number of executed instructions*
* ½ Fmain clock =

= Number of executed instructions * ½ Power/k (2)

Main clock generator has different signal sources:

highest-stable piezo or thermostable multi-oscillator.

GEORGIEV, Iliya, GEORGIEV, Ivo: SPECIFICS AND VULNERABILITIES OF THE TIMING CONTROL IN … 17

Several registers provide bit-by-bit control to switch

on/off the power and to select the frequency divider or

multiplier selecting up to thirty-two frequencies.

Timers (8 to 32 in a system) are devices to synchronize

almost all operations of the sensors and actuators: periodic
interrupt requests, analog or digital signal sequence from the

sensors, serial or parallel outputs.
Timers are implemented by simple procedures based on

count-down counters that are decremented by the clock or

multiples of the clock. Enable/disable flag activates the
timer, after that the initial value of the counter is loaded. At

the beginning the timer is disabled to store the initial value.

After initialization, the timer is enabled. Counting down has
several modes. When the counter reaches number zero, it is

initialized again. Such procedure is overly sensitive because
wrong initial value or wrong mode can destroy the whole

input/output operation and further the thread or the current

handler.

IV. TIMING IN MULTITHREADING

Standardized view of computing consists of two sets: a set
of processes (plus threads and handlers); a set of resources

(CPU time, memory, file structure, interrupt parameters,
access rights, semaphores, etc.) that are manipulated in

timed multithreaded scenario. Multithreading dynamics in

real-time systems depends strongly on exact timing
parameters that are risky for the whole functionality. Main

sensitive parameters are execution time, possible deadline,

and periods. Every thread receives some CPU time (time
quantum or slice) to run based on the priority and aging

policy. Some of the threads are periodical, they work after
some periodical signal from a timer of from a environment.

Execution time can be explicitly declared as a parameter,

but most developers use it implicitly to keep it flexible.
Some applications (so the RTOS) make occasional check of

the running execution time and compare it with a stored

parameter.

Thread’s deadlines are analyzed during every time

quantum in which the thread runs. The deadlines could be
changed during the scheduling or interrupt processing.

Deadlines are checked on different stages. RTOS makes

estimation during every scheduling session whether the
deadline could be met (only for hard real-time threads). The

Run-Time-Environment (RTE) manipulates the deadlines of

the user threads. Thread executable code uses prediction
algorithms for possible deadline violation.

Periods of the periodical threads are stored parameters.

The timer attached to check the periods must be adjusted

with the astronomical time. Estimated execution time,

period, and deadline times can be organized in groups. They

may be fixed or flexible and must be protected by RTOS,

RTE or by the thread or the handler. Multi-core imple-

mentation needs deeper protection of that group [9].

Timing control becomes difficult when threads and even

some block statements are synchronized to access shared

data. Isolation (mutual exclusion) of the shared data

(resources) in all cases is based on simple variables – locks

(different lock names are used in programming development

environments - semaphore, mutex). Locks keep binary state

(free/busy) and can protect some resource (data locks) or

can block cooperative execution of some protected method,

which is called monitor. Synchronization methods

(functions) are offered in almost all application

programming interfaces under different names, but their

internal implementation consists of two base functionalities.

The function wait() exchanges a register that keeps the

busy state with a lock value in the memory; if the loaded

lock is available (free), the critical section can be executed;

in case of busy state, they are two scenarios: a. busy waiting

– the lock is spinning and the thread loops; b. non-busy

waiting – the thread terminates and goes to a blocked state.

Spinning locks are mostly used in short critical sections in

the kernel of the operating systems. Non-busy waiting

scenario is accepted for most user threads.

The function signal() – sometimes it is called notify() -

releases the lock again by exchange a register value (now

free) with the lock variable that was busy during the

execution of the critical section.

Lock variables are retrieved and checked very often, and

they must be stored in the main memory preferably in some

protected sectors.

Each synchronizing function must be atomic, but the

register-memory swap occupies two or three instructions.

Interrupt mechanism allows interrupt after every instruction,

which needs special instructions for such exchange. Some

microcontrollers include atomic swap instruction (for

example SWP in ARM) or load/store using hardware

protected memory sections. Synchronization methods wait()

and signal() should be used in pairs and not swapped.

Recommended approach is not to cache them in the

instruction cache.

In digital signal processing and other important functions,

the running model is the single program-multiple data,

where several independent threads make the same

processing over different pieces of big data. The threads can

terminate their current work at different moments, but they

must wait for the others. Here some barrier instruction(s)

synchronize mutual processing. Barrier could be some event

like end of memory operations in a thread or some count (so

called barrier counter) that is loaded with the number of the

threads. Every execution of the instruction decrements the

counter and if the counter is not zero, the thread waits for a

zero counter. If the architecture supports protected memory

sectors, more advanced barrier instructions are efficient with

different signals to wait - end of loads or stores, completion

of memory accesses.

Timing sensitivity increases in distributed cyber-physical

configuration, where sensors and actuators are grouped

(even swamped) in separate LAN. The timing parameters

should be controlled periodically following common

astronomical time. Writing precise critical sections is a

challenge because the proved algorithms must be mixed

with some time control. The designers usually try to follow

well proved standard synchronization problems (Producer-

Consumer, Dining-

Philosophers, Readers-Writer, Cigarette-Smoker) and

considering time makes those problems more complicated.

Timing together with deadlock-free programming is

another development problem. Deadlock is when some

thread receives a resource and needs another that is used by

other thread, which on its side needs the resource of the first

thread. Conditions are no preemption and only the thread

can release the occupied resource. Deadlock-free prog-

ramming cannot be supported by RTOS, because prevention

18 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

and avoidance need search on huge allocation graphs during

every scheduling cycle.

The RTOS and the applications can try to detect the

deadlocks and to save the system functionality ([10] shows

some method). The implementation drawbacks are no

timing control consideration, difficult to debug, slowing the

execution time, risky.

Serialization of the thread’s execution is the most

effective way to write deadlock-free real-time programs if

the WCET allows it. A thread is not supposed to request a

resource that is currently used by some other thread. In this

case the thread must release all held resources and request

after some delay everything needed.

V. NETWORKING AND INTERNET OF THINGS

Timing control puts additional trends in the diversity of

networking hardware, protocols, and software layers. Let us
consider a manufacturing cell that has a group of robots,

machinery, and transport devices. The robots usually are

connected in a synchronized network with a restricted
length, most popular is the CAN technology [11]. The robot

network and the other devices are connected in lengthy

Ethernet network to the microcontroller of the embedded
IoT system. The IoT-based system is also an Internet host

and performs all Internet layers and protocols. It supports
application specific protocols for remote procedure call and

message exchange. Timing design must follow well-proved

sequence from the manufacturing cell environment through
the control processing and further by Web services to the

cloud. The timing values of all stages must be calculated,

and some maximum latencies to be practically proven. On
all nodes some bandwidth control must upgrade the

conventional networking. The LANs are now time-sensitive,

and the Ethernet layer is time-reserving [12].
Timing control synchronizes the timing behavior in real-

time communication by standardized declaring of bandwidth
and time intervals.

Internet protocols provide authentication and key

management (by public key encryption), confidentiality (by
secret key cryptography), message integrity (by crypto-

graphy hashing) services. IoT requires timing that the

standard Internet layers do not provide. Real-time version of
the Internet Protocol (IP) layer tries to meet such timing

setting some parameters in the IP headers that give priority
to the packets. The given priority and improved congestion

control are to provide quality of service, which guarantees

“best effort” (the question is how “best”). For tight WCET
the best effort policy is not enough, and predictable

buffering can help the time estimation.

In cloud-based cyber-physical systems, the sensors and
actuators are remote to the microcontroller and are

structured in clusters with autonomic control. Time control
is organized separately in the clusters and the main system

and is driven by the common astronomical time.

VI. RTOS SPECIFICS

RTOS have similar functions as conventional operating

systems: multiprocessing and multithreading, memory

management, scheduling, synchronization. Additionally, it

can support hard and soft real-time multithreading that

follows additional requirements [13, 14]: a. process request

for service of the external events at strictly defined timing

latency; b. predictable time to respond to the interrupts; c.

reliable continuous processing after some failure; d. user

reconfigurable configuration based on the application

specifics and the environment; e. support of real-time

constraints that are dictated by the implemented control

functions or external devices; f. dynamical change of the

priorities according to the deadlines.

On the other side, control functions of RTOS have been

reduced to ensure that the critical application runs in

predictable computing container. The correct error-free

functionality of the cyber-physical system is full response-

bility of the designer. RTOS kernel supports only the

memory management, multithreaded scheduling and partly

synchronization.

Input/output streams are driven by the applications but

not by RTOS, which usually manipulates only the system

timer and the hardware failures handlers. Timing control is

distributed in the application’s stack that is important to

track the execution time and the deadlines. Obviously, the

development does not rely on the protection of the operating

system and this could be one of the weakest parts of the

design.

The application does not need to call the operating system

to process the exceptions and interrupts. Change of the

priorities and masks is by privileged operations that can be

done by the RTOS or special interrupt handler supervisor.

Switch context to interrupt handlers is by vector address and

is mixed hardware-software procedure.

Protection of thread’s interference is only partly

supported by the RTOS. The application threads can execute

all instructions including privileged ones. Threads can

directly access protected or non-protected memory areas

according to the desired configuration. Memory protection

is minimal.

Thread scheduling is a RTOS procedure, and it is based

on priorities. The scheduling algorithm can be configured

according to the specifics of the system. Soft real-time

threads are selected for execution by classical round robin

priority scheduling with aging of the priorities. Hard real-

time scheduling algorithm is the rate-monotoning for

periodical threads and is based on the short-first principle

(the priority becomes higher for shorter periods). Earliest

deadline first scheduling recalculates the deadlines during

every scheduling session and runs the thread with the

nearest deadline. The latter has unpredictable high overhead

and can influence the timing control.

Timing controls in RTOS are time quantum, timeout

values and astronomical time.
Time quantum for execution is calculated according to the

priorities and average CPU burst that can be given or
dynamically predicted. During the scheduling session the

quantum and the priorities are dynamically changed

following the accepted aging scenario to keep a relative
fairness.

Timeout values are risky selection and sometimes under-

estimated during the global timing control. Information

exchanged with the peripheral devices can be time-outed if

the operation is suspiciously long. Timeout periods are

selected after long practical estimation in real load of the

environment. Wrong timeout values can dangerously violate

the timing of the system.

Astronomical time must be followed by all subsystems.

The RTOS, the threads and all networking nodes must

regulate their procedures according to the international

GEORGIEV, Iliya, GEORGIEV, Ivo: SPECIFICS AND VULNERABILITIES OF THE TIMING CONTROL IN … 19

atomic time. The cyber-physical system especially connec-

ted to the cloud must follow a protocol to synchronize the

astronomical time. The protocol collects information from

the neighbors’ stations and sets a correction value. Fault-

tolerant sessions should prevent the wrong value

distributing. RTOS do not provide reliable functions to track

the execution time. The designers can specify application-

level tracing of the execution time at some degree – some

examples are given in [15]. But such approaches are not

efficient and difficult to implement and debug.

VII. SPECIFICS IN REAL-TIME HIGH-LEVEL

PROGRAMMING

The functionality of cyber-physical systems is

incorporated in a complex software that is organized in

different vertical and horizontal levels. The complete

software stack consists of general-purpose applications for

IoT, specific applications driving the whole cyber-physical

functionality, run-time environments (RTE) of the high-

level language used, RTOS with a kernel and supporting

system programs, libraries, drivers, and interrupt handlers to

control the peripheral devices.

Application suite is written in different programming

languages that can support on one side Web technologies

and, on the other side, can control variety of sensors and

actuators in dynamically changing environment.

Hierarchical implementation for example uses Java on the

highest IoT level, C language and assembly language for the

lowest level (hardware-dependent libraries, drivers, and

interrupt handlers). Most of the immensely deployed open-

source Android-based IoT-based systems provide such

development hierarchy: Java libraries of classes, Java RTE,

C language libraries, Linux kernel and drivers, assembly-

language libraries, interrupt handlers (general purpose and

hardware specific).

Considering correct timing behavior of the system, the

designers are supposed to understand very deeply how the

high-level programs are translated and executed and to try to

isolate the timing control from the general processing.

Isolation is a traditional approach to increase the computing

security. Classical isolated technologies are memory protect-

tion (hardware and software implemented), access control

(OS controls the resources access from different processes),

firewalls (networking layers level and application driven).

For real-time trusted programming we can briefly explain

efficient combination of low-level secure libraries (usually

in C language) and Java language. Such technologies gain

significant support in combination with the soft real-time

operating system Android, which is considered the

“operating system of IoT”.

Secure library technologies are tightly connected to the

processor functions. For ARM microcontrollers radical

isolation offers the popular ThrustZone [16, 17], which is

efficient because of the architectural support. The main

computing components (hardware, data, software) are

virtualized into two development containers: trusted and

non- trusted. Trusted as well as non-trusted computing (also

called secure and non-secure worlds) have separate

hardware, data, and software; both can run on the same

processor in different time quanta. Trusted resources are

protected, and non-trusted software cannot use them but

must call for a service from a secure (trusted) monitor.

Trusted software could be controlled by a supervising

library or even tiny OS module with a separate kernel. Non-

trusted container may consist of conventional OS (for

example Android) and applications.

For both worlds ARM hardware maintains several states

that define what is the processor mode (user, supervisor,

system, interrupt). A bit in the secure configuration register

declares the world (secure and non-secure). The state gives

levels of privileged access to the resources. The privileges

levels are four. The highest level is only for the trusted

monitor. The other levels are separated for both worlds:

lowest level for the applications, next levels for the separate

operating system (or supervisor in the trusted world).

Memory space is divided between trusted and non-trusted

computing. The trusted memory regions cannot be accessed

by the non-trusted programs. The secure monitor is the key

firmware (TrustZone library) in the trusted functionality.

The ARM architecture has a separate instruction to call the

monitor – Secure Monitor Call (SMC). Executing SMC

activates switch context, which is hardware supported to

save the registers and the programming counter. Secure

monitor performs important functions: a. supervised power

management; b. secure bootstrap of the kernels of the

operating systems; c. SMC handling that fully separates both

worlds; d. common management of the system; e. control of

some exceptions. Both worlds exchange shared data (in

registers or in the memory) only under control of the secure

monitor.

Java secure programming needs deep understanding of

the multithreading organization. Java application, which is

invoked for execution, is converted into a process with one

basic thread. The process could be considered as a container

of the execution code and the process resources. The basic

thread runs the execution code and shares all the resources.

Additionally, it has its own execution resources (prog-

ramming counter, stack, program status words or registers).

The basic thread can generate new user threads (subclasses

of the Thread class). Every user thread has separate

programming counter, stack and state information and

shares all the resources of the process. Designers can declare

ten priorities of the user threads but the RTE does not

guarantee its exact execution.

The designers must understand the duality of the

scheduling mechanism. On one side the Java RTE follows a

state diagram for scheduling only of the user threads

independently from the OS. The Java state diagram supports

the following states: a. New - just created user thread; Ready

- the thread is activated by a start() method and is in a pool

or a queue of all ready user threads; Runnable - the thread is

just activated by a run() method or returns from a blocked

state after successful I/O operation or releasing a lock;

Blocked - the threads is blocked: either by wait() or sleep()

methods, or by activated I/O operation, or it is time-outed;

Dead - run() method terminates.

On the other side, operating system follows different

scheduling state diagram for all active threads. Java

Runnable user thread can receive the Running state from the

OS and will start running in the processor.

Standard Java classes have some obstacles to support

real-time programming. The designer must consider that

very often a Java runnable thread could be blocked

unpredictable way by the operating system, and this can

influence the overall timing. Additional indeterminism

20 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

generates the garbage collector, which is a user thread with a

highest priority and preempts the running thread. Standard

Java implementation also has a limited view to the memory

– the class variables could only use references to the

memory. And finally, thread interaction is limited.

Java real time specification extends the standard

definition and supports deterministic execution and access to

the memory and the hardware configuration.

Memory management declares new memory areas that

can be accessed by objects declared in those areas:

ImmortalMemory (objects live until the end of the appli-

cation) and ScopedMemory (objects are dereferenced only

when they exit the area). Practical recommendation is to

define the timing parameters in such memories: constant

timing parameters in immortal memory and changeable

timing variables in scoped memory.

Real-time thread management is based on new classes

and includes preemption with 28 new priorities with respect

to the deterministic garbage collector. Real-time threads

could be periodic or aperiodic with corresponding release

parameters. The user threads are now three types:

a. Regular Java threads that are subclasses of the

Thread class.

b. RealtimeThreads that keep some deterministic

latency, can cooperate and interrupt the garbage

collector.

c. NoHeapRealTime threads cannot access the heap and

are mostly not preemptive by the garbage collector.

Such threads can be successfully used to manage the

sensitive timing parameters especially for network

time quantum.

The real-time threads must be short and could be

combined only with threads that follow high-resolution

time. It is not recommended to create objects in those

threads that do not manipulate timing behavior.

The scheduling of the user threads strictly enforces true

and fixed priorities. The threads are scheduled in a

predictable way for the same conditions. Priority inheritance

prevents priority inversion and ensures that the higher

priority thread will be executed without latency.

Interrupt handlers are converted into preemptive real-time

threads that can participate in the priority hierarchy like any

other thread. The interrupt latency is predictable low.

Interthread communication is one of the most challenging

topics in real-time programming especially in real-time Java

where the handlers are threads. The cooperative mechanism

is based on a Boolean flag in every thread that can be set

from another thread by an interrupt() method, which is only

an invitation for interruption. A thread, which issues the

interrupt, tries to communicate to the interrupted thread by

setting the flag. If the interrupted thread executes some

blocking method, it can terminate and go into a blocking

state. In case of non-blocking method, the interrupt request

can be analyzed, and this is a signal for additional

processing. Interruption supports cooperative actions to

reorganize any processing in progress, recovers some data

and initiates other, notifies other activities and afterword

terminates.

Communication is concentrated in InteruptedException

which must be thrown and analyzed very carefully [18].

Different ways are recommended to process such exception

in an invocated hierarchy of methods. Ignoring the interrupt

request is strictly not recommended in real-time

programming. If the invoking hierarchy contains blocking

methods, then the most useful technique is to propagate the

exception to the invoking blocking method without catching

it. In case of catch clause, some cleaning or thread-specific

work can be done before rethrowing the exception.

Performing some calculations before rethrowing is the most

reliable approach. After needed processing the current

method can restore the just cleared flag and invoke

interrupt() again to inform the method higher in the call

stack that some interrupt took place. Recommendation for

methods that do not throw the exception is to re-interrupt the

current thread, which is some initialization of the flag and is

a popular technique in interthread communication.

Real-time systems run in a sophisticated environment

with a significant number of signals that are not deter-

ministic in time and frequency. Java provides asynchronous

event handling (AsyncEvent and AsyncEventHandler) and

transfer of control by AsynchronouslyInterruptedExceptions.

AsyncEventHandlers are special threads that can be bounded

with different events (several AsyncEvents) and can be

scheduled and executed asynchronously [19].

Signals from sensors/actuators need immediate action to

switch the running execution to an appropriate service. Such

transfer of control is done by processing of the

AsynchronouslyInterruptedExceptions, which can be thrown

explicitly by firing or by interrupting the current thread in

some pending techniques. The asynchronous interrupt

becomes pending in case when the current thread executes a

deferred section. Propagating a pending asynchronous

interrupt happens later during the next invocation of the

asynchronously interruptible method. An asynchronous

exception can override all other exceptions at the same time.

Several asynchronous exceptions can be generated during

the execution of the first of them.

Cooperative interruption mechanism can provide flexible

interthread communication for control transfer and

necessary cancelation of the current processing. Real

interruption takes place not immediately but after the

decision to cancel or to continue processing in the scope of

the current real-time thread. The interruption can be deferred

to perform specific action without violating the functional

integrity. In case of not necessary interruption the status of

the interruption flag must be restored and this way the

calling method cannot lack the knowledge of the

interruption. Some popular techniques are also to restore

some timing parameters that influence the current thread.

Asynchronous transfer of control based on exception

looks like a strange technology, but it is powerful in case of

careful programming. Deferring, pending, cancelation of the

asynchronous exceptions can generate some indeterminism

in the timing behavior of the real-time processes. Interrupt

handlers are threads that can be preempted, which makes the

transfer of control using exceptions incredibly challenging

with a floating latency, and not deadlock-free.

Additional specific is the attempt to interrupt a thread

that runs in a monitor (synchronized method or block

statement). The exceptions and the restoring of the timing

parameters are postponed.

GEORGIEV, Iliya, GEORGIEV, Ivo: SPECIFICS AND VULNERABILITIES OF THE TIMING CONTROL IN … 21

VIII. DISCUSSION

Recent attempt of analysis is based on several examples

of system corruption because of some weak timing control.

The accumulated practical experience of a team of

developers is the motivation to share partly some techniques

to achieve smoot timing.

Designers must put the critical timing parameters in

mostly protected address spaces. We already mentioned that

Java real-time programming provides two protected

memories but manipulating the data in those memories

needs more professional skills. Other development stacks

provide similar techniques. IoT needs web programming, in

most cases Web services are based on XML vocabularies,

which makes the needed exchange of timing information

more vulnerable.

In low level programming (C language and assembly

language) threads and handlers store the timing parameters

in memory protected sections. Handlers of input/output

interrupts must avoid manipulating the timing variables in

the memory area for the peripheral devices because data

from the environment could be manipulated. In C99

language there is a volatile keyword, which informs the

compiler and RTE, that this variable is exchangeable

between different parts of the whole functionality:

a. from/to ports where the in/out values are independent

from the software control;

b. as global variables used to cooperate information

between the interrupt handlers and the main thread.

Timing control of the most peripheral devices is

organized by separate control registers. Dynamical change

of the timing bounds is performed by logical instruction

(AND, OR, XOR) using some masks. Let us present some

example of changing the main clock frequency (all timers

depend on main frequency). The following simple code

shows how to manipulate the main frequency (we

recommend the presentation in [5]). The SYSCLOCK is a

control register that has bits to manipulate the main clock

frequency. The next C- language statement sets the clock

generator source:

SYSCLOCK = SYSCLOCK & ~0XFFFFFF0F;
// select the oscillator

In ARM assembly language the instructions are the

following:

LDR R1, = SYSCLOCK ; load the address

LDR R0, [R1] ; store SYSCLOCK

AND R0, R0, #0x000000F0 ; change the field

The AND instruction uses immediate operand stored in the

instruction. Loading the instruction in the instruction cache

is vulnerable - the immediate operand could be corrupted by

some attack. It is recommended not to use immediate

operands and to store such constants in a memory protected

area or in ROM.

Widely accepted prevention of timing parameters is not to

use recursion. Recursion pushes partial calculated values in

the stack, which needs uploading of the stacked data in the

data cache. Switch context after preemptive interrupt can

leave the timing values in the cache open to some malicious

change. Here the designer must wind down the cache to the

memory or to use non-cacheable memory for timing control.

RTOS kernel provides some memory consistency protection

that issues the requirement to execute the timing control in

the threads that run in the core. Drastic approach in avionics

system is to run the time manipulating threads only

in one core, the other cores run utility code.

Micro-rebooting (after fault or periodically) to recover

the stable state is another technique, when the system runs in

noisy environment.

We share in Table 1 our view how critical is the violation

of the timing control by corrupting different parameters.

TABLE 1

CRITICALITY OF THE TIMING PARAMETERS

Timing parameter

Critical

(0 – not critical,
10 – catastrophically critical)

Main clock frequency 8 to 10 (catastrophic failure).

Time parameter in the System

Timer, that synchronizes the
information exchange with

peripheral devices

6 (control operations could be

destroyed).
9 (progressive degradation of the whole

functionality).

Timer’s control parameters 7 (input/output failures),

5 (partial degradation).

Time quantum 6 (WCET influence, violated fairness,

starvation, and deadlock possible).

Thread deadline, execution

time, period of the periodical
threads

6– 8 (for the current thread).

3 to 5 (for the whole functionality).
6 (WCET not met of some current

thread).

Timeout parameters 6-8 (chaotic execution of some

operations, degradation).

Change of the user thread

priority

4 (partial or global change of the

timing).

Bugs that prevent immediate

action after sensor/actuators

signal

4 (partial disfunction of the current

thread, delay that can violate the

WCET).

Lock’s swap 5 (shared data not available, functional
degradation of the current thread).

Barrier counters (barrier

events)

4-6 (wrong execution, data corruption).

wait() and signal() functions 7 (shared data destroy, possible

deadlock).

Deadlock’s prevention 5 (blocking of a thread).

Corrupted interthread
asynchronous communication

5 (the dialog with some sensor/actuators
could be timed out).

Astronomical time 4-7 (functional degradation in time,
could be recovered at networking level).

LAN Networking:

– mutual declaration of the

time intervals.

– bandwidth reservation.

Performance disbalance:
5 (data frames corruption, congestion

possible).

6 (more littering, stalled sessions).

Internet – real time IP and

QoS.

5 (heavy retransmission, disbalance of

the information, packet loss).

We have considered mostly systems in advanced and

cloud-based manufacturing. Here we can explain our

motivation and some comments about the given values of
the degree of criticality.

Most catastrophic failure is the change of the main clock

frequency – very often it happens because of bugs. The table

for frequency selection and the modes need special concern.

22 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

All input/output operations are timed. The System timer

supports all operations and interrupts with integrated devices

and timing change could be catastrophic. A number

(hundred and more) peripheral devices are integrated: serial

and parallel ports (programmable devices that provide

analog or digital connection to the selected devices), several

timers to be selected for every input/output operation,

synchronized and hand-shaking interfaces, analogue compa-

rators, digital- to-analogue and analogue-to-digital conver-

ters, power width modulators, USB, Ethernet, and Controller

Area Network, etc. Change the timing fields in control

registers destroys the current operation and during the time

the global behavior.

Time quantum is dynamically changed during the

scheduling. It is an internal value in the kernel of RTOS, but

it is loaded as a timeout parameter and can be maliciously

changed.

Period, execution time, deadline, user thread priority are

characteristics of some thread and usually have influence on

that thread but again after some time their influence

becomes dominating especially for the periodic threads.

Synchronization parameters (locks, barrier counters,

synchronization functions) are important for the whole

functionality because they change the right distribution of

the resources during the time.

Finally, LAN networking and Internet timing depend on

factors that are not easy to be controlled by the running

RTOS and applications and need special attention.

Astronomical time must be adjusted periodically.

Timeout check of the QoS parameters needs to be imple-

mented – it is an overhead procedure.

IX. CONCLUSION

Timing of cyber-physical systems with real-time and IoT

functionality needs more detailed strategy during the

architectural development. Significant corruption is possible

by underestimation of the timing controls.

In this paper, we have focused on the following topics.

We emphasize that the timing control depends on some

more important timing parameters (main clock frequencies,

the group execution time-deadlines-periods, networking

bandwidth and time intervals, synchronization locking,

astronomical time synchronization, deadlock time influence,

etc.).

Development trends are supposed to accelerate the

stability of the timing by usage of real-time oriented

programming techniques. Classical software is to be

plugged- in with some patches where a balance between

RTOS and application specifics guaranty the reliable timing

functionality.

The discussed processing related to the timing control

hopefully would provide structured knowledge and assis-

tance during the system development and testing lifecycle.

REFERENCES

[1] Iliya Georgiev, Ivo Georgiev, “Some Analysis of the Timing

Parameters in Real-time Embedded Systems”, In 2020 International

Conference on Information Technologies (InfoTech), September,
Varna, IEEE Explore, doi: 10.1109/InfoTech49733.2020.9211071.

[2] D.P.F. Möller, Intrusion Detection and Prevention, In: Cybersecurity

in Digital Transformation, SpringerBriefs on Cyber Security Systems
and Networks, Springer, Cham, pp 47-75, 2020,

https://doi.org/10.1007/978-3-030-60570-4_4.

[3] J. A. Yaacoub, O. Salman, H. N .Noura, N .Kaaniche, A. Chehab,
M.Malli , “Cyber-physical systems security: Limitations, issues and

future trends”, Microprocess Microsystems, 77:103201, 2020,

doi:10.1016/j.micpro.2020.103201
[4] Y.Z.Lun, A.D’Innocenzo,F. Smarra, I. Malavolt, M.D. Di Benedetto,

“State of the art of cyber-physical systems security: An automatic

control perspective“, Journal of System and Software, Volume 149, ,
Pages 174-216, March 2019, doi.org/10.1016/j.jss.2018.12.006.

[5] Arm® Architecture Reference Manual,

https://developer.arm.com/documentation
[6] J. Valvano, Volume 2, Real-Time Interfacing to ARM Cortex-M

Microcontrollers (fifth edition), 2017, ISBN: 978-1463590154.

[7] Protected Memory System architecture.Security Architectures –

Arm Developer

[8] Yifeng Zhu, Embedded Systems with ARM Cortex-M

Microcontrollers in Assembly Language and C; 3rd Ed, 2017;
ISBN 978-0982692660.

[9] J. Chen, C. Du, P. Han and Y. Zhang, "Sensitivity Analysis of
Strictly Periodic Tasks in Multi-Core Real-Time Systems," in IEEE

Access, vol. 7, pp. 135005-135022, 2019,

doi: 10.1109/Access.2019.2941958.
[10] Y. Choi, J.Kwon, S. Jeong, H. Park, Y.Eom, “Lightweight

deadlock detection technique for embedded systems via OS-level

analysis: work-in-progress”, in Proceedings of the International
Conference on EmbeddedSoftware, Article No. 2 Pages 1–2,

September 2018, https://doi.org/10.1109/EMSOFT.2018.8537214

[11] ISO 11898-1:2003, Road vehicles, Controller area network
(CAN) , Part 1: Data link layer and physical signalling, ISO

11898, http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=33422
[12] IEEE 802.1Qbv. Enhancements for Scheduled

Traffic, http://www.IEEE802.org, 2016.

[13] J. Valvano, Real-Time Operating Systems for ARM Cortex-M
Microcontrollers (fifth printing), ISBN: 978-1466468863, 2019.

[14] Colin Walls, Embeded RTOS design, 1st edition, Elsevier, E-book

ISBN: 9780128228524, 2020.
[15] N. Carreon, S. Lu, R. Lysecky, “Probabilistic estimation of threat

intrusion in embedded systems for runtime detection”, ACM

Transaction on Embedded Computing Systems, January 2021,
Article No.: 14, https://doi.org/10.1145/3432590

[16] B. Ngabonziza, D. Martin, A. Bailey, H. Cho and S. Martin,

"TrustZone Explained: Architectural Features and Use Cases,"
2016 IEEE 2nd International Conference on Collaboration and

Internet Computing (CIC), Pittsburgh, PA, USA, 2016, pp. 445-

451, doi: 10.1109/CIC.2016.065.
[17] N. Koutroumpouchos, C. Ntantogian , C. Xenakis. “Building Trust

for Smart Connected Devices: The Challenges and Pitfalls of

TrustZone”, Sensors 21(2):520 January 2021,
DOI: 10.3390/s21020520

[18] Oracle. InterruptedException (oracle.com),

https://docs.oracle.com/javase/8/docs/api/java/lang/Interrupted
Exception

[19] Oracle. AsynchronouslyInterruptedException (oracle.com),

https://docs.oracle.com/javase/realtime/doc_2.2u1/.

https://www.sciencedirect.com/science/article/abs/pii/S0164121218302681#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302681#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302681#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302681#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302681#!
https://www.sciencedirect.com/science/journal/01641212/149/supp/C
https://doi.org/10.1016/j.jss.2018.12.006
https://developer.arm.com/documentation
https://developer.arm.com/architectures/security-architectures
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://dl.acm.org/doi/proceedings/10.5555/3283535
https://dl.acm.org/doi/proceedings/10.5555/3283535
https://dl.acm.org/doi/proceedings/10.5555/3283535
https://doi.org/10.1109/EMSOFT.2018.8537214
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33422
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33422
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33422
http://www.iso.org/iso/iso_catalogue/
http://www.ieee802.org/
https://docs.oracle.com/javase/8/docs/api/java/lang/Interrupted

