
8 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

https://doi.org/10.47978/TUS.2021.71.01.002

Abstract — The article is devoted to the development of a

widget's dynamic transaction processing architecture. An object

is a hierarchical widget in a user interface organization. The

subject is the process of the dynamic processing of widget

transactions. The purpose of the article is to develop a dynamic

transaction processing architecture) for a hierarchical widget.

The article discusses the construction of a complex structured

user interface in applications that are built on the basis of event-

oriented programming. The article discusses the use of

hierarchical widgets in companies such as Microsoft and Google,

as well as existing developments related to hierarchical widgets.

The main components of the dynamic processing of widget

transactions, the main objects of the dynamic model are

determined. A hierarchy of objects of the dynamic model of

transaction processing of the widget is proposed. To interact

with the dynamic model and its graphical representation, a

special graphical notation is proposed.

Dynamic processing of widget transactions is a new approach

that has its advantages and disadvantages, the class of tasks

being solved. The proposed architecture combines both work

with unstructured data and the use of a hierarchical data model.

Index Terms — dynamic processing, hierarchical widget,

transaction.

I. INTRODUCTION

Modern web applications are designed for a large number

of users of the distributed data processing system on the

Internet. They include the back end (application server and

database server) and the front end (many users' web

browsers).

Most often, the interface has a hierarchical organization of the

image, when other fragments are placed inside one fragment and

this hierarchy depends on the current state. The hierarchy is

preserved in the resource allocation of the widget [1].

The widget technology is quite new, but its essence is quite

simple and is of great importance and popularity in the

development of modern startups and projects. The concept of

hierarchical widgets is that the states of the dynamic model

provide widget elements that correspond to fragments of the

image on the user's screen. They set the method and

parameters for the formation of the resulting HTML code, as

well as links to parent widgets that combine widget elements

into a hierarchy [2-3]. Web applications can have a complex

user interface that reflects various information from the back-

end database, and can accept control commands and data to

be entered into the database. Therefore, designing a user

interface is a laborious step in creating a web application. For

V. Merlak is with the National Aerospace University «Kharkiv Aviation

Institute», 17, Chkalova str., Kharkiv, Ukraine

(e-mail: v.merlak@csn.khai.edu).

each widget of the interface, you need to solve a difficult task

of interaction with the user: generate HTML code (which sets

the structure and content of the image on the screen, is sent to

the user's browser along with the CSS code, sets the

parameters for the appearance of the image) and JavaScript

code (sets activity on client side), accept the data entered by

the user, check their correctness, process, save in the server

database, change the current state to move to a new cycle of

interaction with the user [4-5].

The purpose of the article is to develop a dynamic

transaction processing architecture for a hierarchical widget.

II. STATEMENT OF THE PROBLEM

In the source [6], the author talks about how Flutter (an

open-source SDK for creating mobile applications from

Google) works using a hierarchical structure of widgets. To

be able to generate the pixels that make up the image

displayed on the device, Flutter needs to know in detail all the

small parts that make up the screen, and in order to identify

all the parts it needs to know the structure and content of all

widgets.

The article [7] from Microsoft talks about the Common

Data Service, which also uses hierarchical widgets. It is

possible to select the necessary controls in accordance with

the user's needs and explore the hierarchy by

expanding/collapsing the widget tree.

The source [8] deals with the results of using hierarchical

widgets when building a web application on the example of

one of the states of a dynamic model, discusses in detail and

compares technologies for organizing testing of user input, as

well as generating messages to the user without using and

using hierarchical widgets. The article shown that the use of

widgets simplifies the organization of XSL transformations

and reduces the cost of additional programming of user data

validation functions. The analysis shown a high need for

widgets in applications that provide for the introduction and

verification of user data.

In this article [2] within the framework of the concept of

hierarchical widgets, algorithmic support for new elements of

the dynamic HSM model has been developed: a controller

element for controlling user-entered receiver elements for

placing the entered data into the DOM buffer and fixing the

detected errors; transition elements, the activity of which

depends on the presence / absence of detected errors.

D. Hrebeniuk is with the National Technical University «Kharkiv

Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine

(e-mail: darina.gg1@gmail.com).

G. Cherneva is with the “Todor Kableshkov” University of Transport, 158

Geo Milev Str. 1574 Sofia, Bulgaria (e-mail: cherneva@vtu.bg).

Widget Transactions Dynamic Processing

Architecture Development

Viktoriia Merlak, Daryna Hrebeniuk, Galina Cherneva

mailto:v.merlak@csn.khai.edu
mailto:darina.gg1@gmail.com

MERLAK, Viktoriia, et al.: WIDGET TRANSACTIONS DYNAMIC PROCESSING ARCHITECTURE DEVELOPMENT 9

The developed algorithms are implemented as part of the

HSMI dynamic model interpreter, which operates on the PHP

platform, and are ready for practical use when creating web

applications.

III. DYNAMIC PROCESSING ARCHITECTURE DEVELOPMENT

Components of dynamic processing of widget transactions:

 SBSL (System Behavioural Scripting Library) – a

library of dynamic models, which contains a set of different

scenarios of system behaviour SBS (System Behaviour

Scenarios)

 CS (Current state) - current state memory, which

stores information about the current state of dynamic models;

 DMD (Dynamic Model Documents) - a set of XML

documents corresponding to the states of the dynamic model;

 DMF (Dynamic Model Functions) – a library of data

processing functions corresponding to the states of the

dynamic model;

 ACF (Archive of Completed Functions) – an archive

of executed functions for processing transactions of the

widget;

 SBSI (System Behavioral Scripting Interpreter) - a

dynamic model interpreter, which, in response to a request R,

generates response A by processing a specific dynamic SBS

model from the SBSL library based on the current state stored

in CS, processing documents with a DMD, and performing

DMF data processing functions.

If the dynamic transaction processing is used in a web

application, then a set of parameters is used as an input

request R, it is acquired together with a URL (for example,

parameters of a display form in POST mode), and as a result

of A, an HTML code is sent to the client in response. The

request parameters indicate the dynamic model being

processed and the need to change its current states. Fig. 1

shows how the dynamic transaction processing of the widget

works.

Fig. 1. Workflow of dynamic transaction processing widget

The dynamic SBS model is a finite state transition graph

hierarchy. The states are loaded with elements that define the

connection with certain data with the DMD, functions over

the DMF. With graph arcs - state transitions - associated

predicates that determine their activity provide a change in

the current state. The dynamic model has a graphical

representation (SBS diagram) and an equivalent textual

representation with XML-like syntax.

The main objects of the dynamic model are the following

components: Model, Sub-model, State, Jump. The root of the

tree must be the Model element. The Sub-model element is a

child of the Model element; it can contain one or more

children of the State type. An element of the State type

contains one or more elements of the Jump type that

characterize either a transition from this state to another

(transition of the JumpS type), or a transition between sub

models (transition of the JumpSM type). The Jump element

also contains some overhead information and an Aim

attribute that sets the direction of the transition. Fig. 2

graphically depicts the hierarchy of objects in the dynamic

model, which was described above.

Fig. 2. The hierarchy of objects of the dynamic model of transaction

processing of the widget

To interact with the dynamic model and its graphical

representation, a special graphical notation is proposed with

the following rules of use:

 dynamic model tree nodes are rectangular signs

(sometimes with an invisible border) with the name of the

corresponding element inside;

 connecting line that defines a parent-child pair (it

joins the parent sign to the right or bottom, and to the child

sign to the left or top);

 the order of child nodes is set hierarchically (top to

bottom, right to left);

 the order of the nodes that are attached to the parent

at one point is determined by the height of the branch of the

connecting lines relative to the point of union: branches from

TABLE I

NOTATIONS OF DYNAMIC MODEL ELEMENTS

Graphic

image

Element

name
Appointment

Sub-model A container that contains a set of states of

one level of the hierarchy, of which only

one is current

State A container of elements (sub models,

transitions, dives, etc.) that are processed

sequentially if this state is current

JumpS type

transition

Specifies the transition from one state to

another within the sub model

JumpSM type

transition

Specifies the transition to the internal sub

model

Action Specifies the DMF function that is

executed in the current state

Variable Sets a variable, saves the state, the value

of which is and can change as long as the

state is current

Container Container for sources and sinks - specifies

the preparation and processing of XML

state data in a DOM object

Source Sets a DOM element to an XML document

in a DMD or DOM object to load into a

real DOM object

Receiver Sets a DOM element to output data to a

DMD or output stream by transforming

the content of the DOM object

Document Gives access to process the file

Button Initiates some event

Archive Saves executed transaction processing

functions of the widget

 PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021

10

above preceded branches from below.

The elements listed above in Table 1 have many built-in

attributes that allow fine tuning, external transformation files

such as CSS, Javascript, and others.

Fig. 3 below provides an example of a simple web

application model based on dynamic transaction processing

of a widget.

Fig. 3. An example of a simple model of a web application based on

dynamic transaction processing of a widget.

The root state S0 is the starting point of the dive and

contains the following elements as child states: three XML

document definitions with DMD (X1, X2, and X3), three

XSL transformation styles (T1, T2, and T3), one SBSL sub

model (M) and an archive A that stores the executed

transaction processing functions of the widget. XML

documents are an attribute set of data that can be modified in

HTML with the appropriate XSL styles.

In the root state S0 in the dynamic DOM object C0, the

data of the XML file X0 is processed using the XSL

transformation table T0 and the data is output to the data area

of this state. Sub model M defines two substates for the parent

state S0: S1 and S2, containing the data X1 and X2,

respectively. They are processed in the same way as the root

state. J2 and J1 are transitions from one state to another within

the sub model, which provide a change in the current state

upon actuation of buttons B2 and B1, respectively.

The figure below shows a schematic representation of the

page structure built by the dynamic transaction processing

interpreter of the widget when processing the dynamic model

using the example above (Fig. 4). First, the user is in state S1,

which is a substate of the root state S0 (Fig. 4a). After

pressing the button B1 ("Go to Text 2"), the transition J1 is

triggered and the application switches to the state S2

(Fig. 4b). It should be noted that only the text field changes,

the title does not change.

Fig. 4. An example of a simple model of a web application based on

dynamic transaction processing of a widget (a - state S1, b - state S2)

Any situation implemented by dynamic transaction

processing of the widget can be represented as a generated set

of events. From this it follows that dynamic transaction

processing is closely related to the ideas of event-driven

programming, but, despite the similarities, there are

differences in technological terms. Dynamic transaction

processing focuses on server-side scripting and the SBSL

interpreter is built as a PHP script. This is due to the desire to

automate program design, the use of a model-based approach

and the desire to make a business process model without

unnecessary complexity through the use of asynchronous data

processing.

In dynamic transaction processing, it is possible to use

client scripts in contexts of different situations. For this, the

scenario for each situation is saved in a separate XML file.

But flexibility in scripting comes at the price of a lack of

design capability in the process of creating a program model.

The use of server-side scripting makes the application

more private and secure from the end user, unlike client

applications.

Based on the foregoing, we can conclude that the proposed

approach to dynamic processing of widget transactions does

not call for replacing existing solutions, but to help efficiently

use resources. When designing a program, you should choose

the right tools that will simplify the implementation of the idea.

Class of tasks for which the dynamic transaction

processing widget approach is suitable:

 work with data based on documents and document

collections;

 work with complex structured and complexly connected

data;

 development of applications that require storing the

history of operations (archive of system states);

 automation of business processes that have a situational

focus (testing, decision making).

MERLAK, Viktoriia, et al.: WIDGET TRANSACTIONS DYNAMIC PROCESSING ARCHITECTURE DEVELOPMENT 11

IV. CONCLUSION

This approach is proposed for building a complex-

structured interface in Internet applications, where the

interface is formed according to the “top-down” principle,

that is, the structure of the model should also be flexibly

scalable.

Data storage and processing is performed in XML format,

which requires active use of DOM technology, because it

does not impose restrictions on the structure of the document.

Also, any document can be represented as a tree of nodes

connected by parent-child relationships. Dynamic transaction

processing of a widget is a new approach that has its own

advantages and disadvantages, a class of tasks to be solved.

The use of dynamic transaction processing combines both

working with unstructured data and using a hierarchical data

model.

REFERENCES

[1] N. Kuchuk, V. Merlak, “The method of redistributing resources of the

university e-learning system on a hyperconvergent platform,”

Radioelectronic and computer systems, 2019, no. 1, pp. 91-98, DOI.

10.32620/reks.2019.1.10.

[2] V. Kanashin, V. Mironov, “Hierarchical widgets: user data control

algorithms in web applications on the basis of situation-oriented

databases,” Bulletin of UGATU, vol. 18, no. 1 (62), pp. 204-213, Oct.

2018.

[3] V. Merlak, I. Zykov, H. Molchanov, “Situatio-oriented approach for

designing vines” Control, Navigation and Communication Systems, vol.

4, no. 50, pp. 91-98,2018, https://doi.org/10.26906/SUNZ.2018.4.125

[4] M. Marinov, “Four-Dimensional Encoding of Character Sequences and

Evaluation of their Similarities and Differences,” Proceedings of the

Technical University of Sofia, vol. 70, no. 2, pp. 11-20, 2020,

https://doi.org/10.47978/TUS.2020.70.02.008

[5] G. Cherneva, “Fractal Models for Approximation of Random

Processes,” Proceedings of the Technical University of Sofia, vol. 67,

no. 2, pp. 171-176, 2017.

[6] D. Boelens, “How Flutter works,” available at

https://habr.com/en/post/476018/#ierarhicheskaya-struktura-

vidzhetov.

[7] Microsoft Documentation, “Visualize hierarchical data with model-

driven apps,” available at https://docs.microsoft.com/en-

us/powerapps/maker/data-platform/visualize-hierarchical-data.

[8] V. Kanashin, V. Mironov, “Hierarchical widgets: experience of use in

the web application on the basis of situation-oriented database,”

Bulletin of UGATU, vol. 18, no. 2 (63), pp. 185-196, Oct. 2018.

https://doi.org/10.26906/SUNZ.2018.4.125
https://doi.org/10.47978/TUS.2020.70.02.008
https://habr.com/en/post/476018/#ierarhicheskaya-struktura-vidzhetov
https://habr.com/en/post/476018/#ierarhicheskaya-struktura-vidzhetov
https://docs.microsoft.com/en-us/powerapps/maker/data-platform/visualize-hierarchical-data
https://docs.microsoft.com/en-us/powerapps/maker/data-platform/visualize-hierarchical-data

